Ecological Monitoring at the Paducah Gaseous Diffusion Plant: Historical Evaluation and Guidelines for Future Monitoring Quality Assurance

Prepared by Kentucky Research Consortium for Energy and Environment 233 Mining and Minerals Building University of Kentucky, Lexington, KY 40506-0107

Prepared for United States Department of Energy Portsmouth/Paducah Project Office Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FG05-03OR23032.

May 2007

Ecological Monitoring at the Paducah Gaseous Diffusion Plant: Historical Evaluation and Guidelines for Future Monitoring Quality Assurance

By:

Richard S. Halbrook Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale, Illinois

Howard H. Whiteman Department of Biological Sciences Murray State University Murray, Kentucky

> Lenn Roberts 908 Dulaney Valley Court Towson, Maryland 21204

> > May 2007

Ecological Monitoring at the Paducah Gaseous Diffusion Plant: Historical Evaluation and Guidelines for Future Monitoring.

Introduction

Investigations to identify ecological impacts from historical and present Paducah Gaseous Diffusion Plant (PGDP) operations have been formally underway since the late 1980's. Annual sampling programs have addressed ecological impacts on specific components of various aquatic and terrestrial populations that inhabit the PGDP, its' environs, and the West Kentucky Wildlife Management Area (WKWMA). Sampling programs have been conducted by Department of Energy (DOE) contractors, Oak Ridge National Laboratory, the Commonwealth of Kentucky Division of Waste Management, the University of Kentucky, and many others. Annual and special sampling programs have been conducted under the authorities of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and Clean Water Act (CWA). Additional investigations were implemented as part of the DOE Environmental Management (EM) Program. Numerous documents summarizing PGDP ecological investigations and substantial quantities of data have been distributed and/or published (Birge and Price 2000, Seaborg 2001).

No single document presently exists that identifies and summarizes all PGDP ecological assessment activities that have been conducted to date. Therefore, the infusion of historical data and information into present and future PGDP ecological assessment activities and decision-making would require the input of numerous individuals that were directly involved in past PGDP activities or the expenditure of substantial research time and money.

The nature of ecological assessment activities at the PGDP requires the participation of many stakeholders including government agencies, contractors, and the public. The stakeholders that participate in these ecological assessment activities have different ecological information needs and significantly different technical backgrounds.

The current project collected, evaluated, and summarized the numerous assessment and management activities that have been conducted at the PGDP in order to provide an ecological strategy to guide future efforts. The outcome is a "living document" that can serve as a basic reference for past and future ecological assessments and management-related activities. This document is written so that it can be understood by managers, project participants, and other stakeholders and interested individuals who require information related to past impacts and the future management of ecological resources at the PGDP and WKWMA. The emphasis of this document is exposure and accumulation of contaminants in "ecological resources" rather than an evaluation of human health concerns; therefore, results may not have a direct relationship to potential human impacts. However, detection of contaminants in ecological resources (i.e., wild species) indicates that environmental contaminants are bioavailable, and therefore, may occur in

humans that are similarly exposed, or may eventually affect human health through food chain transfer, Knowing what specific contaminants are accumulating in which specific biological components of the environment will provide valuable information to resources managers making decisions and implementing specific actions to safeguard ecological resources and potential human exposure.

The specific objectives of this study were to: 1) compile a history of ecological investigative and research related activities for the PGDP and it's environs; 2) identify contaminants of ecological concern resulting from activities at the PGDP; 3) develop conceptual models of potential food web transfer of identified contaminants through terrestrial and aquatic environments; 4) identify regulatory requirements that have driven historical management activities and current regulations that will drive future management activities; 5) identify data gaps that exist in ecological information; and 6) provide recommendations for future ecological assessment activities that will address the long-term monitoring and data requirements of the agencies managing the PGDP and associated stakeholders.

It is emphasized that this document is a "living document" and as such can be modified as additional data are discovered or become available, or if standards should change. This document focuses on the terrestrial environment and does not include fish data except where that information specifically relates to the feeding habits of specific terrestrial species. Tables containing contaminant concentrations of concern and the greatest concentrations measured in various indicator species at the PGDP are included (Tables 1.2 - 1.4), and are designed to provide the reader with a means to evaluate the current knowledge regarding potential contaminant impacts on ecological resources at the PGDP. In some cases, contaminant concentrations of concern have not been established for certain groups of animals. This is especially true for amphibians and reptiles. Until contaminant concentrations of concern are established for these animals, analytical results will have to be compared between animals captured on or near the PGDP and those captured at reference locations.

This document is organized into two chapters. Chapter One identifies contaminants of concern, justifies species selection for ecological monitoring, and describes specific monitoring plans. Chapter Two contains historical data relating to specific species. It is intended that Chapter One provide the basis of the living document and future ecological monitoring at the PGDP, while Chapter Two provides an historical perspective for those that may be interested.

CHAPTER ONE

Identification of Contaminants of Concern

Various strategies were used in selecting contaminants that were evaluated by past ecological studies. It appears that some studies analyzed a suite of metals and radionuclides, as well as various PCB Arocolors (Seaborg 2001, MSAL 2002, also see various Annual Site Environmental Reports), while other studies were more selective in their choice of contaminants for analyses (Birge and Price 2000, McKernan 2002). These past reports were helpful in narrowing potential contaminants to a list that is manageable and suitable from both an historical use and a biological significance perspective (Table 1.1). Although any contaminant may be harmful at certain concentrations, those suggested for monitoring are ones for which elevated environmental concentrations are suspected at the PGDP, or those that have been documented in published literature to potentially have an adverse affect on wild species. It is not the intent of this document to state that the contaminants listed in Table 1.1 are the only contaminants to be analyzed during future ecological studies. Because this is a living document, additional contaminants may be added to this list or contaminants on the current list may be deleted as warranted following review and consensus of responsible parties. However, it is the intent of this document to suggest that the contaminants of concern listed in Table 1.1 be analyzed in all future ecological studies conducted at the PGDP. For PCBs, it is recommended that the concentrations of individual congeners, including the non-ortho and mono-ortho congeners and the dominant congeners that occur in Aroclor 1254 and 1260, be evaluated in addition to the concentrations of Aroclors 1254 and 1260. The specific tissues to be evaluated should be those in which the greatest concentration of the specific contaminant is likely to be measured (i.e., fat – PCBs; liver – metals, PCBs, radionuclides; kidney – metals, radionuclides; muscle – radionuclides) or the tissue that may be associated with the greatest potential of adverse effects (in the case of human consumption, deer muscle tissue).

Included in Tables 1.2 - 1.4 are the concentration of each contaminant that is considered critical for wild species (if known), along with the reference that cited the critical value. Critical concentrations are concentrations at which previous studies have suggested that the potential exists for adverse effects to occur. The identified critical values are conservative and are not intended to suggest that adverse effects are likely at these concentrations. Rather, they are intended to indicate when a more detailed evaluation of the contaminant data may be warranted. Future analyses should insure that the level of detection for each contaminant is below the listed critical value for that contaminant. In addition, future studies should insure that details regarding analytical data (i.e., whether concentrations are measured as dry weight or wet weight, % moisture, % lipid) are included in reports from the analytical laboratories and that analytical reports specify quality control information including criteria for evaluating precision and accuracy; as well as, what actions were taken if these criteria were violated.

Selection of Species for Ecological Monitoring

Since the 1980's, there have been numerous ecological studies conducted on or near the PGDP to evaluate accumulation of potentially harmful contaminants in terrestrial biota. Among these, deer are the only species routinely monitored. However, studies conducted as part of planned investigations have measured contaminant concentrations in amphibians, small mammals (rodents), rabbits, raccoons, bats, and starling, while data from opportunistic sampling of red-tailed hawk, otter, opossum, bobcat, coyote, mink, beaver, and copperhead also are available (See Chapter Two). In order to develop data that will be useful to managers making future decisions regarding ecological resources, it will be necessary to establish routine monitoring of key indicator species. Because wild species integrate contaminants over temporal and spatial scales, routine monitoring of indicator species will provide information on the bioavailability and accumulation of contaminants within the home range of monitored species, as well as providing data on year-to-year trends.

To identify data gaps in our knowledge regarding contaminant burdens in terrestrial species, food web models were developed (Figures 1.1 - 1.4), and indicator species were identified using a set of selection criteria. These models suggest that there are major data gaps with respect to information available for evaluation of contaminant uptake and accumulation in the ecological community at/or surrounding the PGDP. Specific gaps were identified in insectivorous and predatory avian species, mid and upper trophic level mammalian species, and amphibian and reptilian species in general. To alleviate these data gaps, this document identifies species that are recommended for inclusion in future ecological monitoring at the PGDP. Species were selected based on one or more of the following criteria: identified data gaps at the PGDP, trophic position, suitability for monitoring, and availability of a literature-derived contaminant database for the specific species. Suitability for monitoring consideration included ability to obtain an adequate sample size, home range, existing standardized capture techniques, and history of use in contaminant studies at the PGDP and/or elsewhere.

The following species have been identified and are recommended for inclusion in future ecological monitoring at the Paducah plant: white-tailed deer (*Odecoileus virginianus*), raccoon (*Procyon lotor*), American kestrel (*Falco sparverius*), European starling (*Sturnus vulgaris*), southern/northern water snake (*Nerodia fasciata/Nerodia sipedon*), and bullfrog (*Rana catesbeiana*).

White-tailed deer

The white-tailed deer is recommended from a human health and historical perspective rather than from an ecological perspective. Because deer are hunted and consumed by humans, are of interest to the local community, and because there is an historical database for this species, continued monitoring is justified. In addition, there are specific DOE orders mandating monitoring of deer (DOE Order 5400.5). Metal, radionuclide, and PCB concentrations previously measured in deer have all been below concentrations associated with adverse effects in mammalian species (Table1.2). Elevated lead concentrations were reported for deer collected during 1992 monitoring (910 mg/kg

muscle); however, data from reanalysis were highly variable compared to the results of the original analysis and no definitive conclusions could be reached (Logsdon and Davis 1993). Similarly, elevated mercury concentrations were reported in deer monitored in 1993 (2.1 mg/kg Hg in liver, 6.6 mg/kg Hg in muscle). However, reanalysis of these tissues, along with tissues collected from additional deer harvested that year, indicated lower concentrations and suggested errors in the original analysis.

Raccoon

The raccoon is a medium sized omnivorous mammal, relatively abundant on the PGDP and surrounding environment, has previously been used to monitor accumulation and effects of contaminants at the PGDP, and are easily trapped using standardized trapping techniques. Because of its' trophic position, the raccoon will provide data for evaluating biological availability and accumulation of contaminants among mid-trophic level mammalian species. Previous raccoon tissue analyses indicate that contaminant concentrations in some individuals collected on or near the PGDP (13 mg/kg Aroclor 1260 in fat; CDM 2000) are slightly greater than the concentrations of concern (>10 mg/kg Aroclor 1260 in fat Table 1.2) in mammalian species. A maximum total PCB concentration of 39.5 ppm in fat also has been reported (Texas Tech 1999). It is emphasized that concentrations previously detected in raccoons do not necessarily indicate adverse effects, but rather suggest that additional study and evaluation of PCBs in this species is warranted, and that other midlevel omnivorous mammals (i.e., skunks and opossum) or top trophic level carnivores may also be accumulating PCBs.

Although it would be valuable to have a specific top trophic level carnivore as a species for routine monitoring, the relative abundance of a top predatory species utilizing habitat at or near the PGDP does not justify annual trapping for monitoring purposes. However, it is recommended that as individual top carnivorous species become available through incidental trapping, road kill, or from other sources, that the suite of contaminants of concern listed in Table 1.2 be evaluated in the appropriate tissues collected from these species. Potential top trophic level carnivorous species of interest would include bobcat (*Lynx rufus*), coyote (*Canis latrans*), river otter (*Lontra canadensis*), and mink (*Mustela vison*). In addition, tissue analyses of bat species that become available would provide useful information.

European starling

The starling is a generalist mid-trophic level non-native species that consumes mostly insects (~90 % of diet) during the nesting season (spring), and a variety of food (~30 - 50 % insects) during the rest of the year (Martin et al. 1951). Starlings readily use nest boxes placed in open areas, their diet is similar to that of many native species, and they tolerate human activity and disturbance. These characteristics make them an excellent species for monitoring. There are standard protocols for monitoring starlings and they have previously been used to evaluate accumulation and effects of contaminants at the PGDP. Previous starling studies at the PGDP suggest that kidney lead concentrations (max. 5 mg/kg wet weight, McKernan 2002) exceeded the kidney lead concentration of

concern (2 mg/kg wet weight, Table 1.3) and would warrant additional evaluation in future studies. Similarly, previous starling studies at the PGDP reported a maximum kidney aluminum concentration of 38.9 mg/kg wet weight (McKernan 2002); however, no critical tissue concentrations for aluminum were found for avian species, although liver aluminum concentrations of 15.5 mg/kg dry weight have been associated with decreased growth (Capdeveille and Scanes 1995). McKernan (2002) reported no decrease in growth in 15 day old starlings collected from the PGDP, yet aluminum concentrations would warrant additional evaluation in future studies.

American kestrel

The American kestrel is a top carnivorous avian species feeding mostly on small mammals and insects, although amphibians and reptiles are occasionally eaten (Martin et al. 1951). Kestrels will readily use nest boxes during the breading season, which facilitates collection of samples for contaminant analyses, and they have previously been used to monitor bioavailability and accumulation of contaminants in avian species (Smits and Bortolotti 2001, Tella et al. 2002).

Studies of both the European starling and American kestrel use contaminant data measured in chicks raised in nest boxes that have been placed at specific locations selected for monitoring. In both cases, adults feel chicks animal matter (prey) gathered during the breeding season. Contaminants measured in chicks would represent those that are bioavailable to the prev and transferred to the starling or kestrel. Therefore, monitoring starlings and kestrels will provide data to evaluate potential contaminant availability and bioaccumulation in mid-trophic level insectivorous and top trophic level carnivorous avian species. In addition to the starling and kestrel, contaminant data from great blue heron (Ardea herodias) and kingfisher (Megaceryle alcyon) would be valuable for evaluating the availability and accumulation of contaminants among fish-eating avian species. However, unless a heron breeding colony is located near the PGDP or the density of kingfishers nesting along creeks and ponds associated with the PGDP is adequate, these species would not be recommended for routine monitoring, although opportunistic sampling would be recommended. Wild turkey (Meleagris gallopavo) and bobwhite quail (*Colinus virginianus*) were also considered as avian species for contaminant monitoring at the PGDP; however, they are thought to be of greater value from a human health standpoint than from an ecological monitoring standpoint.

Amphibians and reptiles

Data gaps also exist for amphibian and reptilian species at the PGDP; however, selection of a species that meets the monitoring criteria established above is more difficult for these biological groups. The southern and/or northern water snake, and bullfrog may provide the best data for evaluating contaminant bioavailability and accumulation in amphibians and reptiles and are recommended for routine monitoring. Water snakes eat mainly fish and amphibians (EPA 1993, Phillips et al. 1999), are relatively abundant in drainage ditches, outfalls, ponds, and creeks near the PGDP, and occupy an upper trophic level. Bullfrogs are relatively abundant on or near the PGDP, are herbivorous as aquatic

tadpoles and carnivorous as semi-terrestrial adults, and provide sufficient sample size for analysis. In addition, bullfrogs are often used as food for humans in western Kentucky. However, as with most amphibian and reptilian species, there is little data to indicate critical contaminant concentrations for water snakes or bullfrogs (Meyers-Schöne 2000). Until concentrations of concern become available, contaminant concentrations measured in the water snake and bullfrog will provide data on bioavailability, and the difference in tissue concentrations between samples collected on or near the PGDP and those collected from reference locations will need to be evaluated in order to provide an indication of potential concerns.

It has been suggested that a turtle species (snapping turtle *Chelydra serpentine*) also be included in future monitoring at the PGDP. This may be warranted if elevated contaminant concentrations are measured in water snakes, or if the density and distribution of snapping turtles suggest that they would provide data that would be helpful for making management decisions.

Monitoring Protocols

The following are monitoring protocols suggested for species recommended for study at the PGDP. These species, and the data generated through monitoring, are specifically selected to fill data gaps in ecological resources and provide resource managers with knowledge that will be valuable in making decisions and implementing specific actions to safeguard ecological resources and reduce human exposure. Except for deer, these species are not currently part of the KRCEE project.

Frequency of monitoring

It is recommended that all species selected as indicator species be initially monitored for three consecutive years. If contaminant concentrations measured in individual tissue samples of a monitored species on or near the PGDP are less than 90% of the critical concentrations listed in Tables 1.2 - 1.4, or in the cases where critical contaminant data are not available, if the concentrations are statistically similar to or below concentrations measured in tissues of the same species collected from reference sites, it is recommended that the frequency of monitoring be changed to once every other year for six years, followed by once every three years thereafter. If at any time any individually measured tissue concentration is within 90% of the listed critical concentrations are statistically greater than those measured in tissues from the same species collected at reference locations, then the three consecutive years monitoring cycle should begin again (Figure 1.5).

Objectives of monitoring protocols:

1. Measure contaminants of concern in selected species collected on or near the PGDP and from reference locations. At a minimum, metals should be

measured in muscle, kidney, and liver tissue; PCBs should be measured in fat and liver tissue; and radionuclides should be measured in bone, muscle and liver tissue.

2. Compare measured contaminant concentrations with contaminant concentrations of concern or statistically compare contaminant concentrations measured in samples collected from the PGDP with those collected from reference locations to identify contaminants and trophic pathways that need further evaluation.

Deer Monitoring Protocol

Annually, prior to the hunting season, 8 deer from near the PGDP (West Kentucky Wildlife Management Area) should be harvested following protocols that have been previously established (see Annual Site Environmental Reports). The deer should be necropsied and liver, fat, kidney, muscle and bone tissue should be collected and analyzed for the appropriate contaminant using established protocols.

Raccoon Monitoring Protocol

Forty appropriately-sized box traps should be placed at locations likely to capture raccoons on or near the PGDP. An additional 20 traps should be place > 5 km from the PGDP in suitable raccoon habitat. Traps should be appropriately baited, set, and checked daily for 3 weeks during February and/or March. Captured raccoons should be immobilized and the sex, age class, and weight recorded. Twenty randomly-selected adult raccoons from each trapping location should be euthanized and contaminants of concern measured in the appropriate tissues. Captured raccoons that are not collected for contaminant analysis, should have a uniquely numbered ear tag attached for future identification. Population profiles (age class, weight, and sex distributions) should be maintained for comparisons between trap locations and among years.

Kestrel Monitoring Protocol

Twenty kestrel nest boxes should be placed on trees or poles at approximately equal distances from each other around the outside perimeter fence of PGDP. A similar number of next boxes should be placed in suitable habitat approximately 5 km from the plant and will serve as reference. Attempts should be made to locate the reference nest boxes in areas that would not be subjected to the influences of the PGDP. Nest boxes should be approximately 4-6 m above the ground and monitoring should begin prior to nesting and continue through the nesting season. The number of nests constructed, number of eggs laid/nest, number of eggs that hatch/nest, and number of chicks that survive 25 days post-hatch/nest should be recorded. One 25 day-old chick (± 2 days) should be collected from each productive nest (nest containing ≥ 2 chicks), necropsied, and contaminant concentrations measured in appropriate tissues. All other kestrel chicks in each nest should have a US Fish and Wildlife Service leg band attached prior to

fledging. Eggs that are abandoned or fail to hatch and chicks that die prior to 25 days of age also should be collected and contaminant concentrations measured in the appropriate tissues.

Starling Monitoring Protocol

Twenty-four starling nest boxes should be placed at selected locations within or near the perimeter fence of the PGDP. An additional 12 nest boxes should be placed at a suitable reference location at least 5 km from the PGDP. Monitoring of nest boxes should begin in April, prior to the nesting season, and continued until July, the end of the nesting season (Ohio Historical Society 2005). All boxes should be checked at 2-3-day intervals from nest initiation through chick hatching and daily from hatching to chick fledging. Productivity should be measured by recording the number of nests constructed, number of eggs laid per nest, number of eggs hatched per nest, and number of chicks that survived 15 days post-hatch. Chicks should be weighed (to the nearest 0.01 g) in the field on days 3 and 9 post-hatch, and all 15 - 18 day old chicks, eggs that are abandoned or failed to hatch, and chicks that die prior to 15 days of age, should be collected, necropsied, and contaminant concentrations measured in the appropriate tissues.

Water Snake Monitoring Protocol

During April – September, 15 water snakes should be collected from PGDP outfalls, and/or Big and Little Bayou Creeks by hand or by other appropriate means (drift fences with funnel traps, cover boards, etc.). Collections should be geographically spread throughout the PGDP area. An additional 10 water snakes should be collected from streams and creeks located greater than 5 km from the PGDP. Collected snakes should be euthanized, length, weight, and sex recorded, and appropriate tissues selected for contaminant analysis.

Bullfrog Monitoring Protocol

During April – September, 20 adult and 40 large (2nd-year) tadpole bullfrogs should be collected from outfalls, creeks, and ponds on or near the PGDP. Collections should be geographically spread throughout the PGDP. An additional 12 adults and 20 tadpoles should be collected from areas greater than 5 km from the PGDP. Collected frogs and tadpoles should be euthanized, length, weight, and sex recorded, and appropriate tissues selected for contaminant analysis.

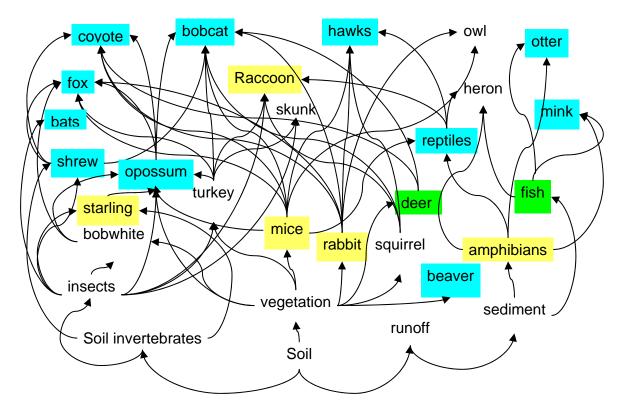


Figure 1.1. Paducah Food Web Model (contaminants transfer model) (1)

(1) Green boxes are species that have been monitored routinely, yellow boxes are species that have been periodically monitored, turquoise boxes are species that have been opportunistically monitored.

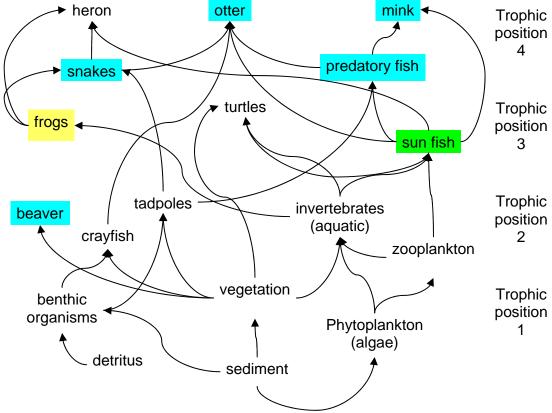


Figure 1.2. Aquatic Food Web and Trophic Position Model. (1)

(1) Green boxes are species that have been monitored routinely, yellow boxes are species that have been periodically monitored, turquoise boxes are species that have been opportunistically monitored.

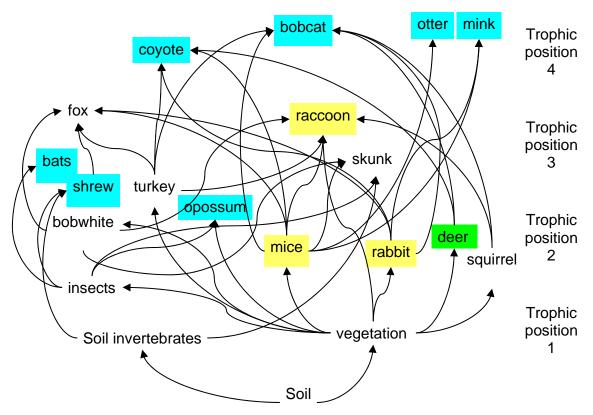
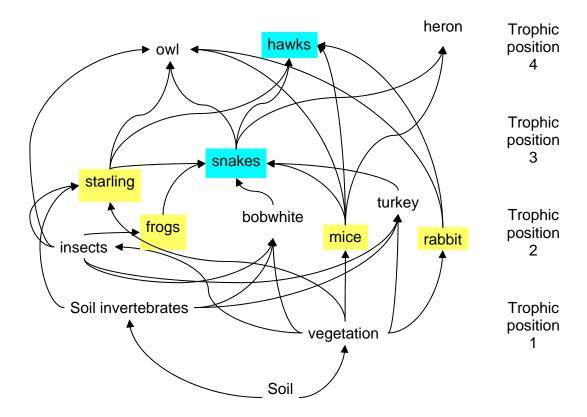
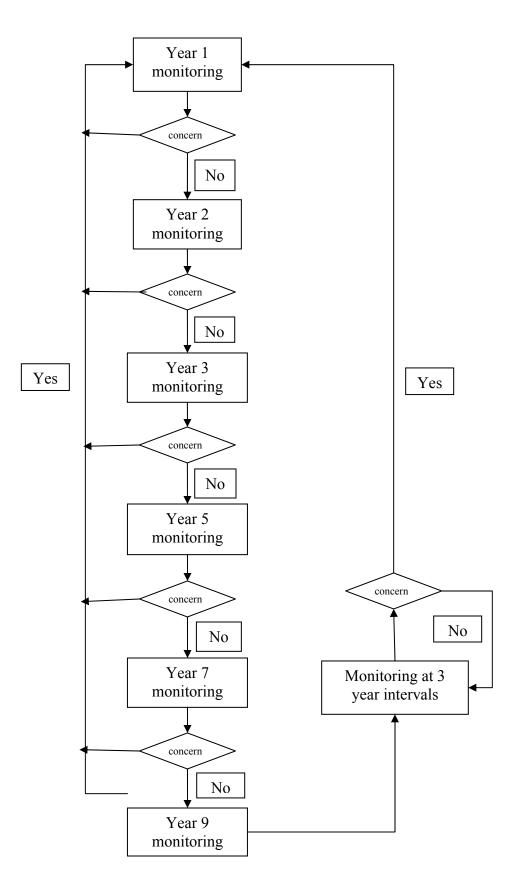


Figure 1.3. Terrestrial Mammalian Food Web and Trophic Position Model (1)

(1) Green boxes are species that have been monitored routinely, yellow boxes are species that have been periodically monitored, turquoise boxes are species that have been opportunistically monitored.




Figure 1.4. Terrestrial Avian Food Web and Trophic Position Model (1)

(1) Green boxes are species that have been monitored routinely, yellow boxes are species that have been periodically monitored, turquoise boxes are species that have been opportunistically monitored.

Table 1.1. Recommended metals, radionuclides, PCB Aroclors, and PCB Congeners for monitoring in tissues of species collected for ecological monitoring at the Paducah Gaseous Diffusion Plant, McCracken County, Kentucky.

Metal	Radionuclide	PCB Aroclor	PCB Congener
Aluminum (Al)	Cesium 137	1254	Non-ortho
Beryllium (Be)	Neptunium 237	1260	77
Cadmium (Cd)	Plutonium 239/240		81
Chromium (Cr)	Potassium 40		126
Lead (Pb)	Strontium 90		169
Mercury (Hg)	Technetium 99		Mono-ortho
Molybdenum (Mo)	Uranium 234		105
Nickel (Ni)	Uranium 235		114
Silver (Ag)	Uranium 238		118
Strontium (Sr)			123
Uranium (U)			156
			157
			167
			189
			Di-ortho (or greater)
			52
			70
			101
			105
			110
			118
			138
			149
			153
			180
			187

Figure 1.5. Recommended frequency for monitoring indicator species at the Paducah Gaseous Diffusion Plant, McCracken County, Kentucky.

CHAPTER TWO

Chapter Two consist of a series of tables summarizing historical data from previous ecological studies conducted at PGDP. Information included in the following tables are designed to provide the reader with a synopsis of known contaminant concentration data, while information in Chapter One is intended to provide guidance for future ecological study at the PGDP. The maximum concentrations measured in specific tissues from individual species are included in Tables 1-2 and 1-4. In some previous monitoring there have been uncertainties regarding the reported concentrations that have resulted in confusion. As previously indicated in this document, future studies should insure that details regarding analytical data (i.e., whether concentrations are measured as dry weight or wet weight, % moisture, % lipid) are included in reports from the analytical laboratories, and these reports should specify quality control information including criteria for evaluating precision and accuracy; as well as, what actions were taken if these criteria were violated.

Year		Concentration (pCi/g wet weight)										
Sampled	²³⁷ Np	²³⁹ Pu	230Th	²³⁴ U	²³⁵ U	²³⁸ U	⁹⁹ Tc					
1985	<8.9E ⁻⁵	5.3E ⁻⁴	<5.9E ⁻⁴	2.5E ⁻³	1.7E ⁻⁴	2.5E ⁻³						
1986		< 0.022					< 0.66					
1988	0	$-0.016 \pm$	-0.154 ±	$0.065 \pm$	$0.003 \pm$	$0.017 \pm$	$0.030 \pm$					
		0.035	0.024	0.019	0.009	0.010	0.062					
1989	$0.041 \pm$	$-0.008 \pm$	$0.005 \pm$	0.122 ±	$0.016 \pm$	$0.043 \pm$	$-0.054 \pm$					
	0.029	0.017	0.010	0.068	0.035	0.041	0.703					
1990	0	0	0	0.008	0	0	0					

Table 2-1: Radionuclides in deer samples from 1985 to 1990 (Annual Environmental Report 1985-1990).

Year								
Sampled	²³⁴ U	²³⁵ U	²³⁸ U	²³⁹ Pu	⁹⁹ Tc	²³⁷ Np	²³⁰ Th	⁹⁰ Sr
1990 bone	0.046	0.061	0.114					1.993
1990 liver	0.016	0.005	0.003					
1990 musc	0.010	0.002			0.166			0.023
1991 bone	0.016		0.013					2.392
1991 liver	0.022	-0.0004	0.006					
1991 musc	0.013	0			0.183			
1992 bone	0.084	0.036	0.024					
1992 liver	0.028	0.004	0.004					
1992 musc	0.030	0.011			-0.146			
1993 bone								1.865
1993 liver	0.010	0.003	0.003					
1993 musc	0.004	-0.001						
1994 bone	0.023	0.004	0.009					2.247
1994 liver	0.010	0.006	0.019					
1994 musc	-0.006	0			-0.027			
1995 bone	0.016		0.032					1.800
1995 liver	0.006							
1995 musc	0.010							
1996 bone	0.041	0.020	0.008					1.277
1996 liver	0.023		0.007					
1996 musc	0.020						0.014	
1997 liver								
1997 musc								
1998 bone	0.019							3.717
1998 liver								
1998 musc								
1999 bone	0.036							3.300
1999 liver							0.017	
1999 musc	0.016							
2000 bone	0.082		0.052					
2000 liver	0.067						0.217	
2000 musc	0.038							

Table 2-2: Average detected radionuclide levels in deer harvested from 1990 to 2000 (Annual Environmental Reports 1990-2000).

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)		(Detects)	, i an i g e	(Detects)	, in ge	(Detects)	
Al	$2.30^{b}(5)$	ND-2.58	$1.60^{b}(3)$	ND-1.94	3.49 ^b (5)	0.808-	(0)	ND-ND
(mg/kg)	2.2 0 (0)	112 2.00	1.00 (0)	1.2 1.9 1	0.13 (0)	0.951	(0)	112 112
Sb	(0)	ND-ND	0.955 ^{jb*}	ND-	(0)	ND-ND	(0)	ND-ND
(mg/kg)			(1)	0.955				
As	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg)								
Ba	0.0374 ^b	0.0151-	0.101 ^{bj}	ND-	0.0816 ^b	ND-	0.0386 ^b	ND-
(mg/kg)	(6)	0.0655	(1)	0.101	(4) 0.018 ^b (1)	0.136	(4)	0.0648
Be	0.0666 ^b	0.0517-	(0)	ND-ND	$0.018^{b}(1)$	ND-	(0)	ND-ND
(mg/kg)	(6)	0.0994				0.018	h	
Cd	0.0422 ^b	ND-	(0)	ND-ND	(0)	ND-ND	$0.186^{b}(4)$	ND-
(mg/kg)	(1)	0.0422	(0)		1.05.(5)	1.65	1.50h (5)	0.209
Cr	0.220 ^b (2)	ND-	(0)	ND-ND	1.95 (5)	1.67-	$1.72^{b}(5)$	1.59-
(mg/kg)	0.0344 ^b	0.265 ND-	(0)	ND-ND	(0)	2.14 ND-ND	(0)	1.80 ND-ND
Co (mg/kg)	(1)	0.0344	(0)	IND-IND	(0)	IND-IND	(0)	IND-IND
Cu	1.64 (6)	1.31-	1.43 ^b (6)	1.16-	1.68 (5)	1.44-	1.50 (5)	1.40-
(mg/kg)	1.04 (0)	2.14	1.45 (0)	1.80	1.00(3)	2.07	1.50 (5)	1.57
Fe	$37.2^{j}(6)$	27.8-	34.5 (5)	29.6-	39.7 (5)	32.3-	39.3 (5)	34.0-
(mg/kg)		46.4		41.4		46.3		44.2
Pb	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	$0.952^{b}(2)$	ND-1.05
(mg/kg)								
Mn	0.186 (6)	0.127-	$0.207^{b}(5)$	0.120-	$0.202^{b}(5)$	0.131-	$0.208^{b}(5)$	0.175-
(mg/kg)		0.290		0.293		0.271		0.276
Hg	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg)		0.015					0.077 (1)	ND
Ni (ma/lea)	$0.320^{b}(6)$	0.217-	(0)	ND-ND	(0)	ND-ND	0.277 (1)	ND-
(mg/kg) Se	(0)	0.477 ND-ND	$0.26^{b}(3)$	ND-0.26	(0)	ND-ND	(0)	0.277 ND-ND
(mg/kg)	(0)	IND-IND	0.20 (3)	ND-0.20	(0)	IND-IND	(0)	IND-IND
Ag	0.621 ^{j*}	ND-	17.9 ^{jn*}	ND-33.5	(0)	ND-ND	$1.37^{b}(1)$	ND-1.37
(mg/kg)	(1)	0.621	(2)	112 55.5	(0)	TID TID	1.57 (1)	11D 1.57
	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg)								
V	(0)	ND-ND	0.0669 ^b	ND-	$0.115^{b}(1)$	ND-	(0)	ND-ND
(mg/kg)			(1)	0.0669		0.115		
Zn	5.13 (6)	ND-8.8	18.6 (5)	15.3-	$23.2^{j}(5)$	16.6-	15.0 (5)	12.8-
(mg/kg) ²²⁸ Ac				22.9		29.0		18.0
	5.719 (1	5.719-						
(pCi/g) ¹²⁷ Ce	sample)	5.719						
	(0)	ND-ND						
(pCi/g) ²¹⁰ Pb	6.322 ^j (1	6.322-						
pCi/g)	sample)	6.322-						
²³⁷ Np	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
(P) ' 5	I	I	I	I	1	l	I	

Table 2-3. Mean of detects (number of detects) and range of contaminants in WKWMA deer muscle 2001-2004 (OREIS 2001-2004).

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)		(Detects)		(Detects)		(Detects)	
^{239/240} Pu	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
⁴⁰ K	25.65 (2	22.98-						
(pCi/g)	samples)	28.32						
⁹⁰ Sr	(0)	ND-ND						
(pCi/g)								
⁹⁹ Tc	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
²³⁰ Th	0.1236	ND-	0.109(1)	ND-	0.1259	ND-	0.05355	ND-
(pCi/g) ²³⁴ Th	(2)	0.1286		0.109	(4)	0.1581	(1)	0.05355
	7.207 (1	7.207-						
(pCi/g) 233/234U	sample)	7.207						
•							(0)	ND-ND
(pCi/g)								
²³⁴ U	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND		
(pCi/g)								
²³⁵ U	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
²³⁸ U	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
b [.] analyte y	vas also dete	cted in one o	or more of th	e blanks				

b: analyte was also detected in one or more of the blanks j: one or more of the values are estimated n: one or more of the values had sample spike recoveries not within control limits *: one or more of the samples had duplicate analysis not within control limits

		Year Sampled									
	2001	2001	2002	2002	2003	2003	2004	2004			
	Mean	Range	Mean	Range	Mean	Range	Mean	Range			
Analyte	(Detects)		(Detects)		(Detects)		(Detects)				
Al	2.42 ^b (6)	1.86-	(0)	ND-ND	1.68 ^b (4)	ND-1.90	$1.58^{b}(3)$	ND-2.43			
(mg/kg)		3.70									
Sb	(0)	ND-ND	(0)	ND-ND	1.09(1)	ND-1.09	(0)	ND-ND			
(mg/kg)											
As	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND			
(mg/kg)	Ŀ		Ŀ								
Ba	0.499 ^b (6)	0.277-	0.471 ^b (5)	0.363-	0.472 (5)	0.347-	0.556 (5)	0.395-			
(mg/kg)	a tables	1.11	(0)	0.541	()	0.676	(0)	0.698			
Be	$0.105^{b}(6)$	0.0666-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND			
(mg/kg)	o cach co	0.162	0 1 0h (=)	0.110	1.1.77h (7)	0.1.55	1.00 (7)	0.001			
Cd	$0.670^{b}(6)$	0.284-	$2.10^{b}(5)$	0.112-	1.17 ^b (5)	0.157-	1.22 (5)	0.826-			
(mg/kg)	a a a c b (a)	1.02	(0)	3.91	1 (5 (5)	1.75	1 50*b (5)	1.76			
Cr	$0.236^{b}(3)$	ND-	(0)	ND-ND	1.65 (5)	1.47-	$1.58^{*b}(5)$	1.21-			
(mg/kg)	$0.196^{b}(1)$	0.340 ND-	(0)	ND-ND	0.104 ^b (2)	1.99 ND-	(0)	1.88 ND-ND			
Co	0.196 (1)	0.196	(0)	ND-ND	0.104 (2)	0.106	(0)	ND-ND			
(mg/kg) Cu	$5.16^{n}(6)$	3.49-	3.57 (5)	3.21-	$0.367^{n}(5)$	3.48-	3.58 (5)	2.60-			
(mg/kg)	5.10 (0)	11.0	5.57 (5)	3.80	0.307 (3)	3.86	5.58 (5)	4.25			
(mg/kg) Fe	66.6 ^j (6)	42.4-105	51.32 (5)	42.4-	$49.9^{n}(5)$	30.9-	$65.9^{\text{jn}}(5)$	38.7-			
(mg/kg)	00.0 (0)	12.1 105	51.52(5)	68.5	19.9 (3)	69.6	05.5 (5)	82.3			
Pb	$0.470^{b}(2)$	ND-	(0)	ND-ND	(0)	ND-ND	$1.23^{b}(2)$	ND-1.48			
(mg/kg)		0.502									
Mn	1.39 ^j (8)	1.01-	1.46 (5)	1.16-	1.51 (5)	1.39-	1.48 (5)	0.955-			
(mg/kg)	~ /	1.62		1.97		1.71		1.84			
Hg	0.028 (3)	ND-	0.030(2)	ND-	0.065 (4)	ND-	$0.032^{n}(5)$	0.025-			
(mg/kg)		0.034		0.034		0.088		0.042			
Ni	$0.320^{b}(6)$	0.225-	(0)	ND-ND	$0.227^{b}(1)$	ND-	$0.462^{b}(5)$	0.288-			
(mg/kg)		0.476			,	0.227	,	0.861			
Se	$0.92^{j}(6)$	0.61-1.1	$0.79^{b}(5)$	0.73-	$0.48^{b}(5)$	0.39-	$0.50^{b}(5)$	0.41-			
(mg/kg)	b			0.89	bn	0.55	a a a bn	0.67			
Ag	1.84 ^b (4)	ND-5.49	(0)	ND-ND	0.156 ^{bn}	ND-	0.398 ^{bn}	ND-			
(mg/kg)	(0)	10.15		1015	(1)	0.156	(1)	0.398			
Tl	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND			
(mg/kg)	(0)		(0)		(0)		(0)				
V (ma/l-a)	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND			
(mg/kg) Zn	10.6 ^{jn} (6)	7.09-	$27.6^{n}(5)$	20.6-	21.9 ^j (5)	20.8-	216(5)	16.2-			
	10.0 (0)	7.09- 15.9	27.0 (3)	20.6- 33.4	21.9 (3)	20.8- 24.4	21.6 (5)	16.2- 29.7			
(mg/kg)	ras also doto		or more of th			24.4		29.1			

Table 2-4: Mean of detects (number of detects) and range of contaminant concentrations in WKWMA deer kidney tissue 2001-2004 (OREIS 2001-2004).

b: analyte was also detected in one or more of the blanks j: one or more of the values are estimated

n: one or more samples had sample spike recoveries not within control limits

*: duplicate analysis on one or more samples not within control limits

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)	riango	(Detects)	rtango	(Detects)	rtango	(Detects)	riango
Al	$12.5^{b}(6)$	1.81-	1.38 ^b (2)	ND-1.41	$3.42^{b}(4)$	ND-5.69	1.48 ^b (2)	ND-1.80
(mg/kg)	12.5 (0)	63.2	1.50 (2)	ND 1.11	5.12 (1)	T(D 5.0)	1.10 (2)	110 1.00
Sb	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	$1.33^{b}(1)$	ND-1.33
(mg/kg)								
As	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg)								
Ba	0.0816 ^b	0.0422-	0.133 ^{bj}	0.114-	$0.113^{b}(5)$	0.0318-	0.0831 ^b	0.0545-
(mg/kg)	(6)	0.112	(6)	0.174		0.254	(5)	0.128
Be	0.166 ^b (6)	0.0894-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg)	o oo c ob	0.234	0.1.c.th (1)	NID	0.1.40h (5)	0.0000	o o o o b (o)	NID
Cd	0.0859 ^b	0.0469-	$0.164^{b}(1)$	ND-	$0.149^{b}(5)$	0.0929- 0.208	$0.203^{b}(3)$	ND- 0.225
(mg/kg) Cr	(6) 0.216 ^b (4)	0.157 ND-	(0)	0.164 ND-ND	2.55 (5)	1.91-	2.41 (5)	2.24-
(mg/kg)	0.210 (4)	0.307	(0)	IND-IND	2.33 (3)	3.13	2.41 (3)	2.24-2.73
Co	0.0675 ^b	0.0363-	$0.171^{b}(1)$	ND-	0.147 ^b (5)	0.118-	0.136 ^b (2)	ND-
(mg/kg)	(6)	0.103	0.171 (1)	0.171	0.117 (3)	0.214	0.150 (2)	0.148
Cu	44.2 (6)	21.7-	31.6 (5)	6.51-	$62.7^{n}(5)$	34.0-	54.9 (5)	17.4-
(mg/kg)		66.7		66.9	()	91.0	. ,	96.7
Fe	$102.2^{j}(6)$	57.4-138	106 (5)	48.0-223	$70.8^{n}(5)$	56.8-	$89.9^{n}(5)$	59.9-129
(mg/kg)						81.7		
Pb	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	$1.18^{bn}(3)$	ND-1.34
(mg/kg)								
Mn	4.52 (6)	4.00-	3.23 (5)	2.46-	4.87 (5)	3.50-	3.52 (5)	2.67-
(mg/kg)	(0)	5.05 ND-ND	(0)	4.49 ND-ND	(0)	6.63 ND-ND	(0)	4.72 ND-ND
Hg (mg/kg)	(0)	IND-IND	(0)	IND-IND	(0)	IND-IND	(0)	IND-IND
Ni	$0.312^{b}(6)$	0.279-	$0.277^{b}(1)$	ND-	(0)	ND-ND	$0.468^{b}(2)$	ND-
(mg/kg)	0.512 (0)	0.359	0.277 (1)	0.277	(0)	TID TID	0.100 (2)	0.661
Se	0.32(1)	ND-0.32	$0.67^{b}(1)$	ND-0.67	$0.73^{b}(2)$	ND-0.87	(0)	ND-ND
(mg/kg)								
Ag	0.416 (2)	ND-	(0)	ND-ND	(0)	ND-ND	$0.208^{b}(2)$	ND-
(mg/kg)		0.808						0.234
Tl	(0)	ND-ND	(0)	ND-ND	0.602 (1)	ND-	(0)	ND-ND
(mg/kg)	(0)		(0)		(0)	0.602	(0)	
V (mg/lrg)	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(mg/kg) Zn	20.6 (6)	13.0-	34.8 (5)	30.3-	35.1 ^{jn} (5)	22.2-	32.6 (5)	26.1-
	20.0 (0)	24.2	54.0 (5)	44.4	55.1 (5)	44.8	52.0 (5)	43.5
(mg/kg) ¹³⁷ Cs	(0)	ND-ND				11.0		13.5
(pCi/g)								
²³⁷ Np	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g) ^{239/240} Pu								
^{239/240} Pu	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
⁴⁰ K	5.06 (5)	3.429-						
(pCi/g)		8.368						

Table 2-5. Mean of detects (number of detects) and range of contaminant concentrations in deer liver tissue 2001-2004 (OREIS 2001-2004).

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)	5	(Detects)	5	(Detects)	5	(Detects)	5
⁹⁰ Sr	(0)	ND-ND			· · · · ·		· · · · · ·	
(pCi/g)								
⁹⁹ Tc			(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)	(0)		0.1050		0.1.51.0h		(0)	
230 Th	(0)	ND-ND	0.1359	ND- 0.1359	0.1512^{b}	ND- 0.1532	(0)	ND-ND
(pCi/g) ^{233/234} U			(1)	0.1559	(2)	0.1352	0.04025	ND-
(pCi/g)							(1)	0.04025
²³⁴ U	0.0747	ND-	0.2537	ND-	(0)	ND-ND	(1)	0.01020
(pCi/g)	(3)	0.08814	(1)	0.2537				
²³⁵ U	(0)	ND-ND	(0)	ND-ND	0.01768	ND-	(0)	ND-ND
(pCi/g)					(1)	0.01768		
²³⁸ U	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)	(0)		(0)		(0)		(0)	
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1016 (µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1221	(0)		(0)		(0)		(0)	
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1232								
(µg/kg)	(0)		(0)				(0)	
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1242								
(µg/kg) PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1248	(0)		(0)		(0)		(0)	
$(\mu g/kg)$								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1254								
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	21.5 (1)	ND-21.5
1260								
(µg/kg) PCB-			(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
РСБ- 1268								
(µg/kg)								
	vas also dete	cted in one	or more of th	e blanks	1		1	
	ore of the val							
n: one or m	ore samples	had sample	spike recove	ries not wit	hin control lin	mits		

Table 2-5. Continued.

n: one or more samples had sample spike recoveries not within control limits *: duplicate analysis on one or more samples not within control limits

				Year Sa	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)	5	(Detects)	0	(Detects)	0	(Detects)	0
¹³⁷ Cs	(0)	ND-ND						
(pCi/g)								
²³⁷ Np	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
^{239/240} Pu	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
⁴⁰ K	48.58 (2	31.99-						
(pCi/g)	samples)	65.18						
⁹⁰ Sr	(0, 1	ND						
(pCi/g)	sample)							
⁹⁹ Tc	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(pCi/g)								
²³⁰ Th	0.1223	ND-	0.1121	ND-	0.1282 ^b	ND-	0.03708	ND-
(pCi/g)	(3)	0.1490	(1)	0.1121	(3)	0.1951	(1)	0.03708
^{233/234} U			(0, 1	ND			(0)	ND-ND
(pCi/g)			sample)					
²³⁴ U	0.07928	ND-	3.38(1)	ND-3.38	(0)	ND-ND		
(pCi/g)	(1)	0.07928						
²³⁵ U	(0)	ND-ND	0.1612	ND-	(0)	ND-ND	(0)	ND-ND
(pCi/g)			(1)	0.1612				
²³⁸ U	(0)	ND-ND	0.5717	ND-	(0)	ND-ND	(0)	ND-ND
(pCi/g)			(1)	0.5717				
b: analyte v	vas also dete	cted in one of	or more of th	e blanks				

Table 2-6. Mean of detects (number of detects) and range of radionuclides in deer bone 2001-2004 (OREIS 2001-2004).

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)	0	(Detects)	0	(Detects)	0	(Detects)	0
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1016								
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1221								
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1232								
(µg/kg)					(0)		(0)	
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1242								
(µg/kg)	(0)		(0)		(0)		(0)	
PCB- 1248	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
(µg/kg) PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1254	(0)	IND-IND	(0)	IND-IND	(0)		(0)	
$(\mu g/kg)$								
PCB-	61.7 (6)	21.5-106	24.4 (2)	ND-28.8	(0)	ND-ND	52.2 (5)	18.8-
1260			(_)					81.0
(µg/kg)								
PCB-			43.1 (2)	ND-46.1	34.7 ^p (4)	ND-37.4	(0)	ND-ND
1268							. /	
(µg/kg)								
p: one or m	ore samples	had >25% d	lifference bet	ween two c	olumns			

Table 2-7. Mean of detects (number of detects) and range of PCB concentrations in deer abdominal fat 2001-2004 (OREIS 2001-2004).

				Year S	ampled			
	2001	2001	2002	2002	2003	2003	2004	2004
	Mean	Range	Mean	Range	Mean	Range	Mean	Range
Analyte	(Detects)	Ũ	(Detects)	Ũ	(Detects)	0	(Detects)	0
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1016								
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1221								
(µg/kg)								
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1232								
(µg/kg)	(0)		(0)		(0)		(0)	
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1242								
(µg/kg)					$\langle 0 \rangle$			
PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
1248								
(µg/kg) PCB-	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
РСБ- 1254	(0)	IND-IND	(0)	IND-IND	(0)		(0)	IND-IND
(µg/kg)								
PCB-	67.9 (6)	22.1-145	18.2 (1, 2	ND-18.2	(0)	ND-ND	79.6 (5)	23.0-147
1260	07.5 (0)	22.1 110	samples)	110 10.2	(0)	IND IND	())(0)	23.0 117
(µg/kg)			p5)					
PCB-			(0)	ND-ND	33.9 ^p (4)	ND-39.9	(0)	ND-ND
1268								
(µg/kg)								
p: one or m	ore samples	had >25% d	lifference bet	ween two c	olumns			

Table 2-8. Mean of detects (number of detects) and range of PCB concentrations in deer rump fat 2001-2004 (OREIS 2001-2004).

	Year Sampled									
	2005	2005	2006	2006	2007	2007	2008	2008		
	Mean	Range	Mean	Range	Mean	Range	Mean	Range		
Analyte	(Detects)	Range	(Detects)	Runge	(Detects)	Range	(Detects)	Runge		
Al	2.39 ^b (3)	ND-2.53	(Detecto)		(Detecto)		(Detecto)			
(mg/kg)	2.59 (5)	110 2.55								
Sb	(0)	ND-ND								
(mg/kg)										
As	(0)	ND-ND								
(mg/kg)										
Ba	0.0874 ^b	0.0562-								
(mg/kg)	(5)	0.119								
Be	(5) (0)	ND-ND								
(mg/kg)										
Cd	$0.185^{b}(1)$	ND-								
(mg/kg)		0.185								
Cr	$0.420^{b}(5)$	0.138-								
(mg/kg)		0.861								
Co	(0)	ND-ND								
(mg/kg)	1 (ch (c)									
Cu	$1.48^{b}(5)$	1.27-								
(mg/kg)	71.41(5)	1.64								
Fe (ma/lea)	71.4 ^j (5)	41.9-160								
(mg/kg) Pb	(0)	ND-ND								
(mg/kg)	(0)	IND-IND								
(ing/kg) Mn	0.510 ^b (5)	0.303-								
(mg/kg)	0.510 (5)	1.04								
Hg	(0)	ND-ND								
(mg/kg)	(0)	112 112								
Ni	(0)	ND-ND								
(mg/kg)										
Se	(0)	ND-ND								
(mg/kg)										
Ag	(0)	ND-ND								
(mg/kg)	Ŀ									
Tl	$1.51^{b}(2)$	ND-2.24								
(mg/kg)	0.005h (1)									
V	$0.337^{b}(1)$	ND-								
(mg/kg)	12.0 (5)	0.337								
	13.9 (5)	11.1-								
(mg/kg) ²³⁷ Np	(0)	17.6 ND-ND								
nCi/g)	(0)									
(pCi/g) ²³⁸ Pu	(0)	ND-ND								
(pCi/g) ^{239/240} Pu	(0)	ND-ND								
(pCi/g)		1,21,0								
⁹⁹ Tc	(0)	ND-ND								
(pCi/g)										
		•					•			

Table 2-9. Mean of detects (number of detects) and range of contaminant concentrations in deer muscle 2005-2008 (OREIS 2005).

	Year Sampled									
	2005	2005	2006	2006	2007	2007	2008	2008		
	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean		
Analyte	(Detects)	(Detects)	(Detects)	(Detects)	(Detects)	(Detects)	(Detects)	(Detects)		
²³⁰ Th	(0)	ND-ND								
(pCi/g)										
^{233/234} U	(0)	ND-ND								
(pCi/g)										
²³⁵ U	(0)	ND-ND								
(pCi/g)										
²³⁸ U	(0)	ND-ND								
(pCi/g)										
a: analyte w	a: analyte was also detected in one or more of the blanks									
	b: one or more of the values are estimated									
c: spike rec	overy not wi	thin control	imits							

Table 2-9. Continued.

	Year Sampled								
	2005	2005	2006	2006	2007	2007	2008	2008	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	
Analyte	(Detects)	rtango	(Detects)	rtango	(Detects)	rungo	(Detects)	rungo	
Al	(0)	ND-ND	(2 010010)		(200000)		(200000)		
(mg/kg)									
Sb	(0)	ND-ND							
(mg/kg)									
As	(0)	ND-ND							
(mg/kg)									
Ba	$0.473^{b}(5)$	0.355-							
(mg/kg)		0.603							
Be	(0)	ND-ND							
(mg/kg)	1.00h(5)	0.407							
Cd	$1.88^{b}(5)$	0.497-							
(mg/kg) Cr	0.222 ^b (3)	3.34 ND-							
(mg/kg)	0.222(3)	0.270							
Co	(0)	ND-ND							
(mg/kg)	(0)								
Cu	4.07 (5)	3.60-							
(mg/kg)	1.07 (0)	4.73							
Fe	82.3 ^{*jn}	50.5-							
(mg/kg)	(5)	98.6							
Pb	(0)	ND-ND							
(mg/kg)									
Mn	1.82 (5)	1.69-							
(mg/kg)		1.92							
Hg	(0)	ND-ND							
(mg/kg)									
Ni	(0)	ND-ND							
(mg/kg) Se	1.23 ^b (5)	1.12-							
(mg/kg)	1.23 (5)	1.12-							
(mg/kg) Ag	(0)	ND-ND							
(mg/kg)	(0)								
Tl	$1.52^{b}(1)$	ND-1.52							
(mg/kg)	(-)								
V	$0.222^{b}(1)$	ND-							
(mg/kg)		0.222							
Zn	21.6 (5)	19.3-							
(mg/kg)		23.9							
b: analyte v	was also dete	cted in one	or more of th	e blanks					

Table 2-10. Mean of detects (number of detects) and range of contaminant concentrations in WKWMA deer kidney tissue 2005-2008 (OREIS 2005).

j: one or more of the values are estimated

n: one or more samples had sample spike recoveries not within control limits

*: duplicate analysis on one or more samples not within control limits

	Year Sampled								
	2005	2005	2006	2006	2007	2007	2008	2008	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	
Analyte	(Detects)	Runge	(Detects)	Runge	(Detects)	Runge	(Detects)	Runge	
Al	$3.07^{\text{Jb}}(3)$	ND-3.20	(Delectis)		(Deteets)		(Deteets)		
(mg/kg)	3.07 (3)	ND-5.20							
Sb	1.49 ^b (2)	ND-1.51							
(mg/kg)	1.47 (2)	ND-1.51							
As	(0)	ND-ND							
(mg/kg)	(0)								
Ba	$0.166^{b}(5)$	0.0866-							
(mg/kg)		0.223							
Be	0.0139 ^b	ND-							
(mg/kg)	(1)	0.0139							
Cd	0.254 ^b (3)	ND-							
(mg/kg)		0.307							
Cr	$0.195^{b}(5)$	0.145-							
(mg/kg)		0.273							
Со	(0)	ND-ND							
(mg/kg)									
Cu	39.7 (5)	18.8-							
(mg/kg)		65.0							
Fe	$101^{j}(5)$	86.2-111							
(mg/kg)									
Pb	(0)	ND-ND							
(mg/kg)		• • •							
Mn	4.58 (5)	2.87-							
(mg/kg)	(0)	5.56							
Hg	(0)	ND-ND							
(mg/kg) Ni	(0)	ND-ND							
(mg/kg)	(0)								
Se	0.403 ^{*b}	ND-							
(mg/kg)		0.527							
Ag	(4) (0)	ND-ND							
(mg/kg)									
Tl	$1.09^{b}(4)$	ND-1.41							
(mg/kg)									
V	$0.248^{b}(3)$	ND-							
(mg/kg)		0.290							
Zn	$33.9^{n}(5)$	29.6-							
(mg/kg)		37.5							
(mg/kg) ²³⁷ Np	(0)	ND-ND							
(pCi/g) ²³⁸ Pu									
²³⁸ Pu	(0)	ND-ND							
(pCi/g) ^{239/240} Pu									
	(0)	ND-ND							
(pCi/g)	(0)								
⁹⁹ Tc	(0)	ND-ND							
(pCi/g)									

Table 2-11. Mean of detects (number of detects) and range of contaminant concentrations in deer liver tissue 2005-2008 (OREIS 2005).

		Year Sampled								
	2005	2005	2006	2006	2007	2007	2008	2008		
	Mean	Range	Mean	Range	Mean	Range	Mean	Range		
Analyte	(Detects)	5	(Detects)	5	(Detects)	5	(Detects)	5		
²³⁰ Th	(0)	ND-ND	((= = = = = = = = = = = = = = = = = = =		(= = = = = = = = = ;			
(pCi/g) 233/234U										
^{233/234} U	(0)	ND-ND								
(pCi/g)										
²³⁵ U	(0)	ND-ND								
(pCi/g) ²³⁸ U										
-	(0)	ND-ND								
(pCi/g)										
PCB-	(0)	ND-ND								
1016										
(µg/kg)										
PCB-	(0)	ND-ND								
1221										
(µg/kg)	(0)									
PCB- 1232	(0)	ND-ND								
(µg/kg) PCB-	(0)	ND-ND								
РСБ- 1242	(0)	IND-IND								
(µg/kg)										
PCB-	(0)	ND-ND								
1248	(0)									
(µg/kg)										
PCB-	(0)	ND-ND								
1254										
(µg/kg)										
PCB-	(0)	ND-ND								
1260										
(µg/kg)										
PCB-	10.7 (1)	ND-10.7								
1268										
(µg/kg)										
	vas also dete ore of the val		or more of th	e blanks						

Table 2-11. Continued.

j: one or more of the values are estimated n: one or more samples had sample spike recoveries not within control limits *: duplicate analysis on one or more samples not within control limits

	Year Sampled									
	2005	2005	2006	2006	2007	2007	2008	2008		
	Mean	Range	Mean	Range	Mean	Range	Mean	Range		
Analyte	(Detects)	0	(Detects)	Ũ	(Detects)	Ŭ	(Detects)	Ũ		
²³⁷ Np	(0)	ND-ND								
(pCi/g) ^{239/240} Pu										
	(0)	ND-ND								
(pCi/g)										
⁹⁹ Tc	(0)	ND-ND								
(pCi/g)										
²²⁸ Th	0.3006	0.1289-								
(pCi/g)	(5)	0.3742								
²³⁰ Th	(0)	ND-ND								
(pCi/g)										
²³² Th	0.01624	ND-								
(pCi/g) 233/234U	(1)	0.01624								
$^{233/234}$ U	(0)	ND-ND								
(pCi/g)										
²³⁵ U	(0)	ND-ND								
(pCi/g)										
²³⁸ U	(0)	ND-ND								
(pCi/g)										
b: analyte v	vas also dete	cted in one of	or more of the	e blanks						

Table 2-12. Mean of detects (number of detects) and range of radionuclides in deer bone 2005-2008 (OREIS 2005).

	Year Sampled								
	2005	2005	2006	2006	2007	2007	2008	2008	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	
Analyte	(Detects)	0	(Detects)	0	(Detects)	0	(Detects)	0	
PCB-	(0)	ND-ND							
1016									
(µg/kg)									
PCB-	(0)	ND-ND							
1221									
(µg/kg)									
PCB-	(0)	ND-ND							
1232									
(µg/kg)	(0)								
PCB-	(0)	ND-ND							
1242									
(µg/kg) PCB-	(0)	ND-ND							
1248	(0)								
(µg/kg)									
PCB-	(0)	ND-ND							
1254									
(µg/kg)									
PCB-	(0)	ND-ND							
1260									
(µg/kg)									
PCB-	75.4 (2)	ND-110							
1268									
(µg/kg)									
p: one or m	ore samples	had >25% d	lifference bet	ween two c	olumns				

Table 2-13. Mean of detects (number of detects) and range of PCB concentrations in deer abdominal fat 2005-2005 (OREIS 2005).

	Year Sampled								
	2005	2005	2006	2006	2007	2007	2008	2008	
	Mean	Range	Mean	Range	Mean	Range	Mean	Range	
Analyte	(Detects)	5	(Detects)	5	(Detects)	5	(Detects)	5	
PCB-	(0)	ND-ND	· · · · ·		, <i>,</i> ,		, , ,		
1016									
(µg/kg)									
PCB-	(0)	ND-ND							
1221									
(µg/kg)									
PCB-	(0)	ND-ND							
1232									
(µg/kg)	(0)								
PCB-	(0)	ND-ND							
1242									
(µg/kg)									
PCB-	(0)	ND-ND							
1248									
(µg/kg) PCB-	(0)	ND-ND							
1254	(0)	IND-IND							
(μg/kg)									
PCB-	(0)	ND-ND							
1260									
(µg/kg)									
PCB-	83.8 (2)	ND-83.8							
1268									
(µg/kg)									
	ore samples	had >25% d	lifference bet	ween two c	olumns				

Table 2-14. Mean of detects (number of detects) and range of PCB concentrations in deer rump fat 2005-2008 (OREIS 2005).

		Location Code ^b and Species									
	BBA		DN	/IR	N	EC	NSD		W	WWK	
Analyte ^a	Mice	Rats	Mice	Rats	Mice	Rats	Mice	Rats	Mice	Rats	
As (ppm dry wt.)	0.046	0.032	0.135	0.166	0.059	0.054	0.125	0.035	0.057	1.075	
Sb (ppm dry wt.)	ND	ND	1.493	0.806	ND	ND	ND	ND	ND	ND	
Ba (ppm dry wt.)	10.716	5.118	8.613	7.743	9.691	5.554	8.250	5.183	8.662	4.963	
Be (ppm dry wt.)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Cd (ppm dry wt.)	0.474	4.095	1.035	0.519	0.480	0.229	0.346	1.186	0.549	0.150	
Cr (ppm dry wt.)	1.941	0.706	1.620	1.055	1.275	0.983	1.227	0.850	1.049	1.777	
Cu (ppm dry wt.)	11.915	11.311	13.356	11.793	13.873	11.716	14.495	10.878	13.859	10.493	
Pb (ppm dry wt.)	3.388	ND	4.974	0.483	4.112	3.025	8.283	4.625	7.280	1.332	
Ni (ppm dry wt.)	0.454	1.304	1.322	1.931	1.166	1.108	1.255	1.345	0.480	0.809	
Tl (ppm dry wt.)	ND	ND	ND	ND	ND	ND	3.628	ND	ND	ND	
Ag (ppm dry wt.)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Al (ppm dry wt.)	63.630	47.111	74.684	62.262	64.661	60.200	71.291	35.879	79.727	49.103	
Fe (ppm dry wt.)	230.724	413.527	249.994	318.704	242.460	312.255	239.513	297.421	256.363	292.446	
PCB-5 (ppb)	ND	ND	ND	1.65	ND	ND	ND	ND	ND	ND	
PCB-12 (ppb)	ND	ND	7.90	7.15	ND	ND	ND	ND	ND	ND	
PCB-28 (ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-44 (ppb)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-66 (ppb)	1.37	ND	1.14	ND							
PCB- 110											
(ppb) PCB-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
118 (ppb)	3.03	ND	4.31	3.96	ND	0.64	3.12	7.18	2.37	1.24	

Table 2-15. Mean contaminant concentrations in PGDP white-footed mice and rice rats 1997 (McMurry and Smith 1997).

		Location Code ^b and Species								
	BBA		DN	/IR	NEC		NS	SD	WWK	
Analyte ^a	Mice	Rats	Mice	Rats	Mice	Rats	Mice	Rats	Mice	Rats
PCB-										
153										
(ppb)	19.26	16.33	20.87	25.79	12.78	17.06	99.63	43.24	12.23	14.51
PCB-										
138										
(ppb)	2.43	3.98	7.51	11.35	5.25	7.67	19.95	16.40	7.00	5.89
PCB-										
180										
(ppb)	7.06	34.97	23.23	26.01	15.07	36.88	274.45	71.30	7.34	11.16
PCB-										
170										
(ppb)	1.86	4.71	7.37	5.47	3.54	5.55	110.27	3.04	3.80	1.37
Total										
PCBs ^c										
(ppb)	33.63	60.00	63.29	72.58	36.64	67.81	507.41	141.14	32.73	34.95
	^a Metals were measured in kidney tissues and PCBs were measured in liver tissues									
^b BBA – Big Bayou Creek & Anderson Road, DMA – Little Bayou Creek & McCaw Road, NEC – Northwest corner										
	security fence, NSD - North south diversion ditch, WWK - Big Bayou Creek & Water Works Road									
[°] Total PCE	Bs is the su	m of conge	eners 118, 1	153, 138, 1	80, and 170)				

Table 2-15. Continued.

	Composite Rodent Sample ID						
Analyte	MS0315-00	MS0322-00	VL0323-00				
Uranium (pCi/g)	23	21.4	ND				
Aluminum (mg/kg)	28.6	4.36					
Antimony (mg/kg)	ND	ND					
Barium (mg/kg)	2.98	ND					
Beryllium (mg/kg)	ND	ND					
Cadmium (mg/kg)	ND	ND					
Chromium (mg/kg)	ND	ND					
Cobalt (mg/kg)	ND	ND					
Copper (mg/kg)	6.79	3.33					
Iron (mg/kg)	269 ^a	458					
Lead (mg/kg)	ND	ND					
Manganese (mg/kg)	6.81	1.71					
Nickel (mg/kg)	0.944	ND					
Silver (mg/kg)	ND	ND					
Thallium (mg/kg)	ND	ND					
Vanadium (mg/kg)	ND	0.364					
Zinc (mg/kg)	45.5	20.6					
Arsenic (mg/kg)	ND	ND					
Mercury (mg/kg)	ND	ND					
Selenium (mg/kg)	ND	ND					
Technetium-99 (pCi/g)	4.14	1.7	11.7				
Cesium-137 (pCi/g)	ND	ND	ND				
Neptunium-237 (pCi/g)	ND	ND	0.1				
Plutonium-239/240	ND	ND	ND				
(pCi/g)							
Uranium-234 (pCi/g)	1.2	0.71	0.061				
Uranium-235 (pCi/g)	0.11	0.055	ND				
Uranium-238 (pCi/g)	4.1	2.8	0.38				
Thorium-230 (pCi/g)	0.033	ND	0.055				
Americium-241 (pCi/g)	ND	ND	ND				
Cesium-137 (pCi/g)	ND	ND	ND				
Cobalt-60 (pCi/g)	ND	ND	ND				
Potassium-40 (pCi/g)		ND					
PCB-1016 (µg/kg)		ND					
PCB-1221 (µg/kg)		ND					
PCB-1232 (µg/kg)		ND					
PCB-1242 (µg/kg)		ND					
PCB-1248 (µg/kg)		ND					
PCB-1254 (µg/kg)		ND					
PCB-1260 (µg/kg)		850					

Table 2-16. Radionuclides, and metals and PCB concentrations in composite rodent samples 2000 (CDM 2000).

	Mean Contaminant Concentrations						
Analyte	WF Mouse	Prairie Vole	Pine Vole	Least Shrew			
Al							
(mg/kg)	124 (8)	55.175 (4)	44.4 (4)	34.45 (8)			
Sb (mg/kg)							
(mg/kg) As							
(mg/kg)	0.0277 (7)	0.00925 (4)	0.0148 (1)	0.04 (8)			
Ba							
(mg/kg)	$2.42^{n}(8)$	$4.17^{n}(4)$	$2.88^{n}(4)$	$3.67^{n}(8)$			
Be				0.0000 (1)			
(mg/kg)				0.0023 (1)			
Cd (mg/kg)	0.0580 (8)	0.00123 (4)	0.0134 (4)	0.06 (8)			
Cr	0.0500 (0)	0.00125 (4)	0.0154 (4)	0.00(0)			
(mg/kg)	1.03 (8)	$1.6^{n}(4)$	$1.02^{n}(4)$	$1.18^{n}(8)$			
Со							
(mg/kg)	0.166 (4)		0.126 (2)	0.18(1)			
Cu (mg/lvg)	6 51 (9)		266(A)	(95(0))			
(mg/kg) Fe	6.51 (8)		3.66 (4)	6.85 (8)			
(mg/kg)	114 (8)		69.8 (4)	159 (8)			
Pb							
(mg/kg)	1.03 (8)		0.254 (4)	0.48 (8)			
Mn	5,50 (0)		2.00 (4)	2.52 (0)			
(mg/kg) Hg	5.59 (8)		3.88 (4)	2.52 (8)			
пg (mg/kg)	0.0221 (1)			$0.040^{n}(8)$			
Ni	0.0221 (1)			0.010 (0)			
(mg/kg)	$1.48^{n}(8)$		$1.61^{n}(4)$	$1.36^{n}(8)$			
Se	_			_			
(mg/kg)	$0.252^{n}(8)$		$0.0852^{n}(4)$	$0.45^{n}(8)$			
Ag (mg/kg)			0.117(1)				
(mg/kg) Sr			0.117 (1)				
(mg/kg)	7.00 (8)		6.63 (4)	6.49 (8)			
Tl			, <i>i</i>				
(mg/kg)	0.241 (2)		0.464 (1)	0.39 (1)			
U	0.012 (0)		0.0500 (4)	0.04 (0)			
(mg/kg) V	0.812 (8)		0.0599 (4)	0.04 (8)			
v (mg/kg)	0.184 (1)		0.163 (1)	0.16(1)			
Zn	0.101(1)		0.100 (1)	0.10(1)			
(mg/kg)	$38.2^{n}(8)$		$28.6^{n}(4)$	$44.81^{n}(8)$			
¹³⁷ Cs							
(pCi/g) ²¹⁰ Pb							
				50 55 (1)			
(pCi/g)				50.55 (1)			

Table 2-17. Mean contaminant concentrations in small mammal composite samples calculated from concentrations above detection (number of detects) 2001 (Annual Environmental Report 2001).

	Mean Contaminant Concentrations							
Analyte	WF Mouse	Prairie Vole	Pine Vole	Least Shrew				
²¹² Pb								
(pCi/g)	0.997 (4)							
(pCi/g) ²¹⁴ Pb								
(pCi/g)	1.52 (2)		0.941 (1)					
(pCi/g) ²³⁷ Np								
(pCi/g) ²³⁹ Pu								
(pCi/g) ⁴⁰ K								
	0.05 (0)		0.47 (4)	21.0 (1)				
(pCi/g) ⁹⁹ Tc	9.35 (3)		8.47 (4)	31.8 (1)				
	5.00 (()		2.17(4)					
(pCi/g) ²²⁸ Th	5.80 (6)		3.17 (4)					
	1 62 (2)			1.76 (2)				
(pCi/g) ²³⁰ Th	1.62 (2)			1.76 (2)				
(pCi/g) ²³² Th								
(pCi/g) ²³⁴ Th								
(pCi/g) ²³⁴ U								
	0.319 (2)							
(pCi/g) ²³⁵ U								
(pCi/g) ²³⁸ U	0.0084 (5)		0.001 (1)					
²³⁸ U								
(pCi/g)	0.225 (8)		3.51 (6)	3.66 (9)				
PCB-								
1016								
(µg/kg)								
PCB-								
1221								
(µg/kg) PCB-								
ГСВ- 1232								
(µg/kg)								
PCB-								
1242								
(µg/kg)								
PCB-								
1248								
(µg/kg)								
PCB-								
1254								
(µg/kg)								
PCB-								
1260	0.0052 (0)		677 (A)	5 0552 (0)				
(µg/kg)	9.09E3 (8)		57.7 (4)	5.95E3 (8)				
PCB-								
1268 (ug/kg)								
(µg/kg)								

Table 2-17. Continued.

	Organism Sampled					
Analyte	Possum Bone	Raccoon 1 Bone	Raccoon 2 Bone			
Uranium (pCi/g)	ND	ND	ND			
Strontium-90 (pCi/g)	ND	ND	0.6			
Technetium-99 (pCi/g)	ND	ND	ND			
Neptunium-237 (pCi/g)	ND	ND	ND			
Plutonium-239/240	ND	ND	ND			
(pCi/g)						
Uranium-234 (pCi/g)	ND	0.26	0.17			
Uranium-235 (pCi/g)	ND	ND	ND			
Uranium-238 (pCi/g)	ND	0.46	0.34			
Thorium-230 (pCi/g)	ND	ND	ND			
Americium-241 (pCi/g)	ND	ND	ND			
Cesium-137 (pCi/g)	ND	ND	ND			
Cobalt-60 (pCi/g)	ND	ND	ND			
Neptunium-237 (pCi/g)	ND	ND	ND			

Table 2-18. Radionuclides in raccoon and opossum bone 2000 (CDM 2000).

	Organism Sampled				
Analyte	Possum Kidney	Raccoon 1 Kidney	Raccoon 2 Kidney		
Uranium (pCi/g)	ND	ND	ND		
Technetium-99 (pCi/g)	ND	0.22	ND		
Cesium-137 (pCi/g)	ND	ND	ND		
Americium-241 (pCi/g)	ND	ND	ND		
Cobalt-60 (pCi/g)	ND	ND	ND		
Neptunium-237 (pCi/g)	ND	ND	ND		
Uranium-234 (pCi/g)		0.15	0.17		
Uranium-235 (pCi/g)		ND	ND		
Uranium-238 (pCi/g)		0.44	0.29		
Thorium-230 (pCi/g)		ND	ND		

Table 2-19. Radionuclides in raccoon and opossum kidney 2000 (CDM 2000).

		Organism Sampled		
Analyte	Opossum Liver	Raccoon 1 Liver	Raccoon 2 Liver	
Aluminum (mg/kg)		2.54	2.19	
Antimony (mg/kg)		ND	ND	
Barium (mg/kg)		ND	ND	
Beryllium (mg/kg)		ND	ND	
Cadmium (mg/kg)		0.262	0.266	
Chromium (mg/kg)		ND	ND	
Cobalt (mg/kg)		ND	ND	
Copper (mg/kg)		10.9	4.4	
Iron (mg/kg)		878	608	
Lead (mg/kg)		ND	ND	
Manganese (mg/kg)		2.39	2.15	
Nickel (mg/kg)		0.75	ND	
Silver (mg/kg)		ND	ND	
Thallium (mg/kg)		ND	ND	
Vanadium (mg/kg)		0.624	0.364	
Zinc (mg/kg)		45.3	27 ^a	
Arsenic (mg/kg)		ND	ND	
Mercury (mg/kg)		0.081 ⁿ	0.508	
Selenium (mg/kg)		0.94	ND	
Uranium (pCi/g)	ND	ND	ND	
Technetium-99 (pCi/g)	ND	1.47	0.57	
Cesium-137 (pCi/g)	ND	ND	ND	
Neptunium-237 (pCi/g)	ND	ND	ND	
Plutonium-239/240	ND	ND	ND	
(pCi/g)				
Uranium-234 (pCi/g)	ND	ND	ND	
Uranium-235 (pCi/g)	ND	ND	ND	
Uranium-238 (pCi/g)	ND	ND	ND	
Thorium-230 (pCi/g)	ND	ND	ND	
Americium-241 (pCi/g)	ND	ND	ND	
Cobalt-60 (pCi/g)	ND	ND	ND	
PCB-1016 (µg/kg)		ND	ND	
PCB-1221(µg/kg)		ND	ND	
PCB-1232 (µg/kg)		ND	ND	
PCB-1242 (µg/kg)		ND	ND	
PCB-1248 (µg/kg)		ND	ND	
PCB-1254 (µg/kg)		ND	ND	
PCB-1260 (µg/kg)		ND	ND	
n: one or more samples wit	th blanks not within contro	l limits		

Table 2-20. Metal and PCB concentrations, and radionuclides in raccoon and opossum liver 2000 (CDM 2000).

43

	Organism Sampled				
Analyte	Opossum Fat	Raccoon 1 Fat	Raccoon 2 Fat		
Uranium (pCi/g)		ND	ND		
Cesium-137 (pCi/g)		ND	ND		
Neptunium-237 (pCi/g)		ND	ND		
Americium-241 (pCi/g)		ND	ND		
Cobalt-60 (pCi/g)		ND	ND		
PCB-1016 (µg/kg)		ND	ND		
PCB-1221(µg/kg)		ND	ND		
PCB-1232 (µg/kg)		ND	ND		
PCB-1242 (µg/kg)		ND	ND		
PCB-1248 (µg/kg)		ND	ND		
PCB-1254 (µg/kg)		ND	ND		
PCB-1260 (µg/kg)		13000	4800		

Table 2-21. Aroclor concentrations and radionuclides in raccoon fat 2000 (CDM 2000).

	Organism Sampled					
Analyte	Opossum Muscle	Raccoon 1 Muscle	Raccoon 2 Muscle			
Aluminum (mg/kg)	18.2	2.04	20.5 ^a			
Antimony (mg/kg)	ND	ND	ND			
Barium (mg/kg)	0.232	ND	ND			
Beryllium (mg/kg)	0.0191	ND	ND			
Cadmium (mg/kg)	ND	ND	ND			
Chromium (mg/kg)	ND	ND	ND			
Cobalt (mg/kg)	ND	ND	ND			
Copper (mg/kg)	1.67	1.91	3.37			
Iron (mg/kg)	53.4 ^a	48.4 ^j	71 ^a			
Lead (mg/kg)	ND	ND	ND			
Manganese (mg/kg)	0.667	0.357	0.444			
Nickel (mg/kg)	1.04	ND	ND			
Silver (mg/kg)	ND	ND	ND			
Thallium (mg/kg)	ND	ND	ND			
Vanadium (mg/kg)	ND	ND	ND			
Zinc (mg/kg)	53.1	41.9	60.5 ^a			
Arsenic (mg/kg)	ND	ND	ND			
Mercury (mg/kg)	0.047^{a}	0.025 ⁿ	0.051 ^a			
Selenium (mg/kg)	ND	ND	ND			
Uranium (pCi/g)	ND	ND	ND			
Technetium-99 (pCi/g)	ND	ND	ND			
Cesium-137 (pCi/g)	ND	ND	ND			
Neptunium-237 (pCi/g)	ND	ND	ND			
Plutonium-239/240 (pCi/g)	ND	ND	ND			
Uranium-234 (pCi/g)	ND	ND	ND			
Uranium-235 (pCi/g)	ND	ND	ND			
Uranium-238 (pCi/g)	ND	ND	ND			
Thorium-230 (pCi/g)	ND	ND	0.029			
Americium-241 (pCi/g)	ND	ND	ND			
Cobalt-60 (pCi/g)	ND	ND	ND			
Neptunium-237 (pCi/g)	ND	ND	ND			
j: estimated value		•	1			
n: one or more samples with	th blanks not within contro	l'imits				

Table 2-22. Metal and PCB concentrations, and radionuclides in opossum and raccoon muscle 2000 (CDM 2000).

	Species					
	Raccoon Opossum Bobcat Grou					
Al (mg/kg)	5.61 (n=4)		6.25 (n=2)	G		
Sb (mg/kg)	ND (n=0)		ND (n=0)			
As (mg/kg)	0.010 (n=2)		0.0580 (n=2)			
Ba (mg/kg)	0.11560^{n} (n=2)		0.239 (n=1)			
Be (mg/kg)	ND (n=0)		ND (n=0)			
Cd (mg/kg)	1.05 (n=4)		0.266 (n=2)			
Cr (mg/kg)	0.308^{n} (n=4)		0.678 (n=2)			
Co (mg/kg)	ND (n=0)		ND (n=0)			
Cu (mg/kg)	6.65 (n=4)		3.75 (n=2)			
Fe (mg/kg)	113 (n=4)		89.2 (n=2)			
Pb (mg/kg)	0.491 (n=4)		0.0842 (n=2)			
Mn (mg/kg)	0.923 (n=4)		1.14 (n=2)			
Hg (mg/kg)	0.104 (n=4)		0.0825 (n=2)			
Ni (mg/kg)	1.22^{n} (n=4)		0.703 (n=2)			
Se (mg/kg)	1.34 (n=4)		1.32 (n=2)			
Ag (mg/kg)	ND (n=0)		ND (n=0)			
Sr (mg/kg)	0.239 (n=4)		0.280 (n=2)			
Tl (mg/kg)	0.305 (n=1)		ND (n=0)			
U (mg/kg)	0.987 (n=4)		0.260 (n=2)			
V (mg/kg)	0.148 (n=2)		ND (n=0)			
Zn (mg/kg)	20.2^{n} (n=4)		19.0 (n=2)			
¹³⁷ Cs (pCi/g)	ND (n=0)		ND (n=0)			
²¹² Pb (pCi/g)	0.509 (n=1)					
²³⁷ Np (pCi/g)	ND (n=0)		ND (n=0)			
²³⁹ Pu (pCi/g)	ND (n=0)		ND (n=0)			
⁴⁰ K (pCi/g)			ND (n=0)	ND (n=0)		
⁹⁹ Tc (pCi/g)	33.9 (n=1)		1.9 (n=1)			
²²⁸ Th (pCi/g)		1.23 (n=2)	0.710 (n=2)			
²³⁰ Th (pCi/g)	ND (n=0)		ND (n=0)			
²³⁴ Th (pCi/g)			6.77 (n=1)			
²³⁴ U (pCi/g)	ND (n=0)	ND (n=0)	ND (n=0)			
²³⁵ U (pCi/g)		0.948 (n=1)	0.0037 (n=1)			
²³⁸ U (pCi/g)	0.354 (n=1)	ND (n=0)	0.0740 (n=2)			
n: One or more s	amples had sample	spike recoveries 1	not within control lim	iits		

Table 2-23. Mean of detectible (number of detects) contaminant concentrations in kidney tissue of mammals collected from the scrap metal site (OREIS 2001).

	Mammal Sampled						
Analyte	Raccoon	Opossum	Bobcat	Groundhog	Cottontail		
Al (mg/kg)	5.69 (n=5)	•	5.47 (n=2)	0			
Sb (mg/kg)	0.557 (n=1)		ND (n=0)				
As (mg/kg)	0.0306 (n=5)		0.115 (n=2)				
Ba (mg/kg)	0.623^{n} (n=1)		ND (n=0)				
Be (mg/kg)	ND (n=0)		ND (n=0)				
Cd (mg/kg)	0.520 (n=5)		0.132 (n=2)				
Cr (mg/kg)	2.32^{n} (n=5)		0.352 (n=1)				
Co (mg/kg)	0.582 (n=1)		ND (n=0)				
Cu (mg/kg)	12.9 (n=5)		6.21 (n=2)				
Fe (mg/kg)	862 (n=5)		224 (n=2)				
Pb (mg/kg)	0.905 (n=5)		0.0468 (n=2)				
Mn (mg/kg)	3.37 (n=5)		3.98 (n=2)				
Hg (mg/kg)	0.176^{n} (n=5)		0.0446 (n=2)				
Ni (mg/kg)	$3.70^{n} (n=5)$		0.257 (n=1)				
Se (mg/kg)	0.847^{n} (n=5)		0.821 (n=2)				
Ag (mg/kg)	ND (n=0)		ND (n=0)				
Sr (mg/kg)	0.119 (n=4)		ND (n=0)				
Tl (mg/kg)	ND (n=0)		ND (n=0)				
U (mg/kg)	0.177 (n=5)		0.0694 (n=2)				
V (mg/kg)	0.612 (n=5)		ND (n=0)				
Zn (mg/kg)	41.1^{n} (n=5)		31.7 (n=2)				
¹³⁷ Cs (pCi/g)	ND (n=0)		ND (n=0)				
²¹² Pb (pCi/g)					0.439 (n=1)		
²¹⁴ Pb (pCi/g)	0.808 (n=1)						
²³⁷ Np (pCi/g)	ND (n=0)		ND (n=0)				
²³⁹ Pu (pCi/g)	ND (n=0)		ND (n=0)				
⁴⁰ K (pCi/g)	4.18 (n=4)	5.61 (n=1)	8.94 (n=1)	13.8 (n=1)	5.04 (n=1)		
⁹⁹ Tc (pCi/g)	27 (n=1)		ND (n=0)				
²²⁸ Th (pCi/g)	0.320 (n=2)	0.346 (n=1)					
²³⁰ Th (pCi/g)	ND (n=0)		ND (n=0)				
²³⁴ Th (pCi/g)	2.46 (n=1)		6.09 (n=1)				
²³⁴ U (pCi/g)	ND (n=0)		13.6 (n=1)				
²³⁵ U (pCi/g)	0.0017 (n=1)		0.591 (n=1)				
²³⁸ U (pCi/g)	4.1 (n=2)		3.6 (n=4)				
PCB-1016	/ ->		/				
(µg/kg)	ND (n=0)		ND (n=0)				
PCB-1221							
(µg/kg)	ND (n=0)		ND (n=0)				
PCB-1232	ND(m-0)		ND(m-0)				
(µg/kg)	ND (n=0)		ND (n=0)				
PCB-1242	ND(n-0)		ND(n-0)				
(µg/kg) PCB-1248	ND (n=0)		ND (n=0)				
PCB-1248 (μg/kg)	ND (n=0)		ND (n=0)				
PCB-1254							
μg/kg)	ND (n=0)		ND (n=0)				
PCB-1260							
(μg/kg)	1418 (n=5)		2122 (n=2)				
(µg/ng)	1710 (II- <i>3)</i>		2122 (II-2)				

Table 12-24. Mean of detectible (number of detects) contaminant concentrations in liver tissue of mammals collected from the scrap metal site (OREIS 2001).

	Mammal Sampled						
Analyte	Raccoon	Opossum	Bobcat	Groundhog	Cottontail		
PCB101							
(µg/kg)	2.72^{p} (n=4)						
PCB118							
(µg/kg)	$6.14^{p} (n=4)$						
PCB126							
(µg/kg)	ND (n=0)						
PCB128							
(µg/kg)	4.38 (n=1)						
PCB138							
(µg/kg)	23.6^{p} (n=4)						
PCB153							
(µg/kg)	40.2 (n=5)						
PCB170							
(µg/kg)	$23.4^{p} (n=3)$						
PCB180							
(µg/kg)	$159.1^{p} (n=5)$						
PCB187							
(µg/kg)	12.4 (n=5)						
PCB194							
(µg/kg)	34.7 (n=5)						
PCB66 (µg/kg)	1.13^{p} (n=4)						
PCB77 (µg/kg)	ND (n=0)						
n: One or more sa	mples had sample	e spike recoveries	not within contro	l limits			
p: One or more sa	mples had >25%	difference betwee	en two columns				

Table 2-24. Continued.

Table 2-25. Mean of detectible (number of detects) Aroclor and PCB contaminant concentrations in fat tissues of mammals collected from the scrap metal site (OREIS 2001).

	Mamma	l Sampled
Aroclor/Congener	Raccoon	Bobcat
PCB-1016 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1221 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1232 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1242 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1248 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1254 (µg/kg)	ND (n=0)	ND (n=0)
PCB-1260 (µg/kg)	2382 (n=4)	33535 (n=2)
PCB-1268 (µg/kg)	ND (n=0)	ND (n=0)
PCB101 (µg/kg)	24.7^{p} (n=2)	
PCB118 (µg/kg)	1012 (n=4)	
PCB126 (µg/kg)	ND (n=0)	
PCB128 (µg/kg)	13.4 (n=4)	
PCB138 (µg/kg)	139 (n=2)	
PCB153 (µg/kg)	1160 (n=4)	
PCB170 (µg/kg)	754 (n=4)	
PCB180 (µg/kg)	1620 (n=4)	
PCB187 (µg/kg)	10.0 (n=4)	
PCB194 (µg/kg)	606 (n=4)	
PCB66 (µg/kg)	30.4 ^p (n=1)	
PCB77 (µg/kg)	ND (n=0)	
p: One or more samples had >25%	b difference between two columns	

Table 2-26. Brain Aroclor concentrations measured in a bobcat collected from the scrap metal site (OREIS 2001).

Aroclor (µg/kg)	Bobcat Brain Tissue Concentration
PCB-1016	ND
PCB-1221	ND
PCB-1232	ND
PCB-1242	ND
PCB-1248	ND
PCB-1254	ND
PCB-1260	35.2
PCB-1268	ND

T								
			Cor	ngener Co	oncentrati	ons		
					Necrop		Biopsy	
	Liver		Brain		Fat	Necrop	Fat	Biopsy
	Mean	Liver	Mean	Brain	Mean	Fat	Mean	Fat
Congener*	(Detects)	Range	(Detects)	Range	(Detects)	Range	(Detects)	Range
					0.022	ND-	0.071	ND-
101 (ppm)	(0)	ND-ND	(0)	ND-ND	(11)	0.041	(18)	0.135
		ND-		ND-	0.147	0.009-	0.212	ND-
118 (ppm)	0.018 (3)	0.025	0.009(1)	0.009	(15)	0.502	(21)	0.744
		ND-		ND-	0.572	0.053-	0.841	0.043-
153 (ppm)	0.024 (8)	0.043	0.028 (6)	0.081	(15)	1.474	(25)	7.814
	0.024	ND-		ND-	0.261	0.026-	0.347	ND-
138 (ppm)	(11)	0.047	0.033 (4)	0.074	(15)	0.871	(24)	2.638
		0.011-			0.040	0.009-	0.109	ND-
187 (ppm)	0.025 (5)	0.047	(0)	ND-ND	(15)	0.124	(14)	0.474
					0.027	ND-	0.053	ND-
128 (ppm)	(0)	ND-ND	(0)	ND-ND	(12)	0.065	(10)	0.102
	0.035	ND-		ND-	0.606	0.041-		0.035-
180 (ppm)	(10)	0.128	0.038 (5)	0.108	(15)	2.859	1.29 (25)	15.729
		ND-		ND-	0.213	0.017-	0.543	ND-
170 (ppm)	0.028 (5)	0.071	0.081 (1)	0.081	(15)	1.115	(23)	5.683
		ND-			0.198	0.015-	0.517	ND-
194 (ppm)	0.030(7)	0.069	(0)	ND-ND	(15)	0.845	(24)	6.292
						ND-		ND-
66 (ppm)	(0)	ND-ND	(0)	ND-ND	0.034 (1)	0.034	0.130 (3)	0.170
77 (ppm)	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
126 (ppm)	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
169 (ppm)	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND	(0)	ND-ND
Total								
PCBs	0.102	ND-		ND-	2.250	0.244-		0.116-
(ppm)	(13)	0.370	0.097 (6)	0.344	(15)	7.354	3.79 (25)	39.543
* Congener	values are o	on a wet we	ight basis					

Table 2-27. Mean of detected concentrations (number of detects) and range of PCB congeners in PGDP raccoon liver, brain, necropsy fat, and biopsy fat 1998 (Texas Tech 1999).

Table 2-28. Mean metal concentrations calculated from kidney tissue with detectable concentrations (number of detects) that were collected from PGDP raccoons 1998 (Texas Tech 1999)

	Metal Concentrations				
Metal ^a	Kidney Mean (Detects)	Kidney Range			
Aluminum (mg/kg)	2.7 ^{*n} (14)	ND-3.7			
Antimony (mg/kg)	(0)	ND-ND			
Barium (mg/kg)	0.42 (1)	ND-0.42			
Beryllium (mg/kg)	0.02 (3)	ND-0.02			
Cadmium (mg/kg)	2.5 (15)	0.52-4.6			
Chromium (mg/kg)	1.6 (1)	ND-1.6			
Cobalt (mg/kg)	(0)	ND-ND			
Copper (mg/kg)	5.3 (15)	2.9-7.7			
Iron (mg/kg)	89.4 ^{*n} (15)	53.0-116			
Lead (mg/kg)	2.6 (1)	ND-2.6			
Manganese (mg/kg)	1.3 (15)	0.74-2.5			
Nickel (mg/kg)	1.3 (1)	ND-1.3			
Silver (mg/kg)	$3.7^{*n}(4)$	0.5-7.7			
Thallium (mg/kg)	4.4 (6)	ND-5.4			
Uranium (µg/kg)	2.6 (3)	ND-5.4			
Vanadium (mg/kg)	0.38 (8)	ND-0.69			
Zinc (mg/kg)	21.1 (15)	14.4-29.4			
*one or more samples had dupli	r metal values are on a wet weight or c cate analysis not within control limits recoveries not within control limits	lry weight basis			

Analyte	Hawk Liver Concentration (ppm)
Arsenic (As)	<0.175
Calcium (Ca)	93.3
Copper (Cu)	7.72
Iron (Fe)	575
Magnesium (Mg)	149
Manganese (Mn)	3.48
Mercury (Hg)	0.075
Molybdenum (Mb)	0.87
Nickel (Ni)	1.96
Potassium (K)	1740
Selenium (Se)	1.01
Silver (Ag)	0.761
Sodium (Na)	1370
Thallium (Th)	<6.57
Vanadium (V)	0.652
Zinc (Zn)	26.5
Aroclor 1260	5.25
% Lipids	3.8

Table 2-29. Contaminant concentrations measured in a red-tailed hawk liver 1996 (Price and Birge 1998).

	Aroc	Aroclor Concentration (µg/mL)						
Sample Number	1248	1254	1260					
1	< 0.020	< 0.020	0.67					
1	<0.020	< 0.020	0.76					
2	<0.020	< 0.020	< 0.020					
3	<0.020	< 0.020	0.09					
4	< 0.020	< 0.020	0.06					
Sample #1 was analyzed in	Sample #1 was analyzed in July of 1997 and redone in October of 1997							

Table 2-30. Aroclor concentrations in red-tailed hawk blood samples collected during1997 (Price and Birge 1998).

Table 2-31.	Aroclor concentrations in a road killed mink collected in 1997 (Price and
Birge 1998)	

	Aroclor Concentration (mg/kg)					
Mink Tissue Sample	1248	1254	1260			
Liver	< 0.187	< 0.187	1.1			
Kidney	< 0.228	< 0.228	0.53			

	Li	ver	Kid	Iney	
Metal (mg/kg)	PD001	PD002	PD001	PD002	
Silver	4.84	0.15	0.34	0.22	
Aluminum	93.64	142.2	21.62	25.38	
Arsenic	<1.734	<1.734	<1.734	<1.734	
Barium	53.38	4.79	0.41	0.398	
Beryllium	< 0.025	< 0.025	0.047	< 0.025	
Cadmium	< 0.046	0.18	< 0.046	0.233	
Cobalt	0.038	0.02	0.022	0.016	
Chromium	< 0.384	0.518	< 0.384	< 0.384	
Copper	11.92	64.1	1.48	1.18	
Iron	99.63	107.1	49.15	43.65	
Magnesium	131.1	110.4	87.75	85.62	
Nickel	0.93	0.46	0.391	0.41	
Lead	4.85	2.52	1.51	1.5	
Antimony	< 0.012	< 0.012	< 0.012	< 0.012	
Selenium	0.337	0.31	0.42	0.73	
Titanium	< 0.001	< 0.001	< 0.001	0.005	
Vanadium	< 0.110	< 0.110	< 0.110	< 0.110	
Zinc	23.47	24.73	12.14	12.04	
Mercury					
-	Н	air			
Mercury	15.92	8.93			

Table 2-32. Metal concentrations in two river otter incidentally collected while trapping beaver near the PGDP in 2000 (Halbrook 2000).

	Li	ver	F	at
	PD001	PD002	PD001	PD002
Aroclor 1260	2.47	4.75	13.94	32.48
(mg/kg)				
non-ortho congeners	(µg/kg)			
cb77	<dl< td=""><td><dl< td=""><td>0.05</td><td>0.3</td></dl<></td></dl<>	<dl< td=""><td>0.05</td><td>0.3</td></dl<>	0.05	0.3
cb169	18.25	<dl< td=""><td><dl< td=""><td>39.95</td></dl<></td></dl<>	<dl< td=""><td>39.95</td></dl<>	39.95
mono-ortho congener	rs (µg/kg)			
cb18	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
cb31	13.4	13.75	31.45	224.65
cb105	<dl< td=""><td><dl< td=""><td>90.55</td><td>157.4</td></dl<></td></dl<>	<dl< td=""><td>90.55</td><td>157.4</td></dl<>	90.55	157.4
cb118	<dl< td=""><td>18.9</td><td>114.55</td><td>38.45</td></dl<>	18.9	114.55	38.45
di-ortho congeners (µ	ug/kg)			
cb40	<dl< td=""><td><dl< td=""><td><dl< td=""><td>15.95</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>15.95</td></dl<></td></dl<>	<dl< td=""><td>15.95</td></dl<>	15.95
cb44	<dl< td=""><td><dl< td=""><td><dl< td=""><td>59.1</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>59.1</td></dl<></td></dl<>	<dl< td=""><td>59.1</td></dl<>	59.1
cb49	18.05	16.9	42	57.75
cb52	18.35	23.15	100.3	212.25
cb87	14.25	14.55	58.3	171.75
cb99	77.4	91.75	617.7	1183.7
cb101	53.3	157.95	294.15	325.8
cb110	<dl< td=""><td>13.75</td><td>36.2</td><td>104.4</td></dl<>	13.75	36.2	104.4
cb128	15.45	35.4	132.4	293.1
cb129	<dl< td=""><td>10.45</td><td>48.3</td><td>118.5</td></dl<>	10.45	48.3	118.5
cb138	197.95	324.1	978.7	1688.95
cb153	188.75	359.35	1143.25	2152.05
cb170	106.85	141.35	614.1	893.6
cb180	212.25	385.15	1608.35	2928.35
tri-ortho congeners (µ	ıg/kg)			
cb151	141.7	87.95	17.8	157.65
cb183	26.45	65.85	204.55	479.45
cb201	57.85	80.25	203.2	450.6
cb203	39.15	87.85	262.85	607.75
cb185/167	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
cb156/200	69.7	<dl< td=""><td>32.95</td><td>82.45</td></dl<>	32.95	82.45

Table 2-33. Aroclor 1260 and PCB congener concentrations measured in two river otter incidentally collected while trapping beaver near the PGDP in 2000 (Halbrook 2000).

		Weight	eight Metal Concentration (µg/g)							
		of								
Sample	Number*	Tissue	Ag	Be	Cd	Cr	Cu	Pb	Ni	Zn
BEAV#1	KID1	1.512	0.015	< 0.13	2.06	0.14	3.70	0.57	0.75	20.94
BEAV#1	KID2	0.618	0.027	< 0.32	3.78	1.05	6.57	1.00	1.26	51.38
BEAV#2	KID1	1.169	0.013	< 0.17	1.71	< 0.09	3.85	0.54	0.76	27.61
BEAV#2	KID2	1.107	0.009	< 0.18	1.73	< 0.09	4.25	0.53	0.71	10.31
BEAV#3	KID1	1.077	0.009	< 0.19	1.63	0.81	3.76	0.53	0.81	11.37
BEAV#3	KID2	1.482	0.013	< 0.13	1.55	0.50	4.59	0.60	0.87	20.54
	Mean	1.161	0.014	N.D.	2.08	0.66	4.45	0.63	0.86	23.69
BEAV#1	LIV1A	1.200	0.023	< 0.17	0.22	0.10	3.75	0.58	0.78	10.42
BEAV#1	LIV1A	1.885	0.011	< 0.11	0.24	0.15	3.62	0.55	0.87	17.97
BEAV#2	LIV1A	1.287	0.011	< 0.16	0.11	0.09	3.47	0.59	0.90	23.64
BEAV#3	LIV1A	1.132	0.013	< 0.18	0.11	< 0.09	5.68	0.89	0.87	27.98
BEAV#3	LIV1B	1.50	0.004	< 0.17	< 0.09	0.14	0.94	< 0.09	< 0.26	2.05
	Mean	1.331	0.013	N.D.	0.17	0.12	3.50	0.65	0.85	16.41
BEAV#1	FAT1A	0.921	0.030	< 0.22	0.12	0.15	4.86	0.77	1.00	2.39
BEAV#1	FAT1B	1.327	0.002	< 0.15	< 0.08	0.17	0.78	< 0.08	< 0.23	1.47
BEAV#2	FAT1A	2.956	0.005	< 0.07	< 0.03	0.07	0.61	< 0.03	< 0.10	1.12
BEAV#2	FAT1B	2.142	0.005	< 0.09	< 0.05	0.07	0.87	0.06	< 0.14	1.98
BEAV#3	FAT1A	0.877	0.013	< 0.23	< 0.01	0.14	1.39	< 0.11	< 0.34	3.35
BEAV#3	FAT1B	1.916	0.002	< 0.10	< 0.05	0.06	0.45	< 0.05	< 0.16	0.73
	Mean	1.690	0.010	ND	0.12	0.11	1.49	0.42	1.00	1.84
*Samples d tissue samp	lesignated 1 and ble	2 are separa	ite sample	es, where	as sampl	les A and	B are du	uplicates	from the	same

Table 2-34. Metal concentrations measured in kidney (KID), liver (LIV), and fat (FAT) tissue from beaver collected near the PGDP (Birge and Price 2000).

		Weight	Weight	Aroclor concentration (µg/g)							
		of	of								
Name	Number	Organ	Tissue	1248	1254	1260	Total				
BEAV1	KID1	28.739	4.980	0.028	< 0.016	0.006	0.034				
BEAV1	KID2	26.188	3.845	0.032	< 0.021	0.017	0.049				
	Mean	27.464	4.413	0.030	N.D.	0.012	0.042				
BEAV2	KID1	43.563	3.910	< 0.020	< 0.020	< 0.020	< 0.020				
BEAV2	KID2	48.339	4.728	< 0.017	< 0.017	< 0.017	< 0.017				
	Mean	45.951	4.319	N.D.	N.D.	N.D.	N.D.				
BEAV3	KID1	46.815	4.624	< 0.017	< 0.017	< 0.017	< 0.017				
BEAV3	KID2	47.393	6.591	< 0.012	< 0.012	< 0.012	< 0.012				
	Mean	47.104	5.6075	N.D.	N.D.	N.D.	N.D.				
BEAV1	LIVA	351.47	7.912	0.049	< 0.010	0.010	0.059				
BEAV1	LIVB		8.098	0.043	< 0.010	0.008	0.051				
	Mean	351.47	8.005	0.046	N.D.	0.009	0.055				
BEAV2	LIVA	598.17	6.687	< 0.012	< 0.012	< 0.012	< 0.012				
BEAV3	LIVA	532.50	7.053	< 0.011	< 0.011	< 0.011	< 0.011				
BEAV3	LIVB		4.815	< 0.017	< 0.017	< 0.017	< 0.017				
	Mean	532.50	5.934	N.D.	N.D.	N.D.	N.D.				
BEAV1	FATA	21.641	2.949	0.773	< 0.027	0.142	0.915				
BEAV1	FATB		2.648	0.699	< 0.030	0.160	0.859				
	Mean	21.641	2.7985	0.736	N.D.	0.151	0.887				
BEAV2	FATA	88.68	5.629	< 0.028	< 0.028	< 0.028	< 0.028				
BEAV2	FATB		5.412	< 0.030	< 0.030	< 0.030	< 0.030				
	Mean	88.68	5.5205	N.D.	N.D.	N.D.	N.D.				
BEAV3	FATA	127.03	3.295	< 0.024	< 0.024	< 0.024	< 0.024				
BEAV3	FATB		7.405	< 0.011	0.018	< 0.011	0.018				
	Mean	127.03	5.35	N.D.	0.018	N.D.	0.018				
	*Samples designated 1 and 2 are separate samples, whereas samples A and B are duplicates from the same tissue sample										

Table 2-35. Aroclor concentrations measured in kidney (KID), liver (LIV), and fat (FAT) tissue from beaver collected near the PGDP (Birge and Price 2000).

				Metal	Concent	ration (mg/kg)			
	Zn	Fe	As	Hg	Se	Со	Pb	Tl	Sb	Ag
Mean										
of										
Detects	9.4	13.5	ND	0.044	ND	ND	ND	ND	ND	5.0
Range	8.6-	10.3-		0.036-						5.0-5.0
of	10.6	16.1		0.048						
Detects										
	Ni	Cu	Cr	Al	Be	Mn	Ba	Cd	V	
Mean										
of										
Detects	ND	0.76	ND	ND	ND	0.09	ND	ND	ND	
Range		0.54-				0.09-				
of		1.00				0.09				
Detects										

Table 2-36. Metal concentrations measured in muscle tissue of six rabbits collected from the PGDP during 1998 (OREIS 1998).

Table 2-37. Radionuclides measured in muscle tissue of six rabbits collected from the PGDP during 1998 (OREIS 1998).

	Radionuclide Concentration (pCi/g)										
	⁹⁹ Tc	¹³⁷ Cs	⁹⁰ Sr	230Th	^{239/240} Pu	²³⁴ U	²³⁵ U	²³⁸ U	²³⁷ Np		
Mean	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Range											

	1232	1221	1016	1260	1254	1248	1242
Fat							
Mean of							
Detects	ND						
Fat							
Range							
of							
Detects							
Muscle							
Mean of							
Detects	ND						
Muscle							
Mean of							
Detects							

Table 2-38. Aroclor concentrations measured in fat and muscle tissue of six rabbits collected from the PGDP during 1998 (OREIS 1998).

				Metal	Concent	tration (mg/kg)			
	Zn	Fe	As	Hg	Se	Со	Pb	Tl	Sb	Ag
Mean										
of										
Detects										
(#	12.4	16.8								
detects)	(6)	(6)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
Range	8.59-	12.3-	ND-	ND-	ND-	ND-	ND-	ND-	ND-	ND-
of	17.4	21.1	ND	ND	ND	ND	ND	ND	ND	ND
Detects										
	Ni	Cu	Cr	Al	Be	Mn	Ba	Cd	V	
Mean										
of										
Detects										
(#		0.781		2.49		0.288				
detects)	(0)	(6)	(0)	(4)	(0)	(6)	(0)	(0)	(0)	
Range	ND-	0.330-	ND-	ND-	ND-	0.167-	ND-	ND-	ND-	
of	ND	0.997	ND	2.92	ND	0.450	ND	ND	ND	
Detects										

Table 2-39. Metal concentrations measured in muscle tissue of six rabbits collected from the PGDP during 1999 (OREIS 1999).

Table 2-40. Radionuclides measured in muscle tissue of six rabbits collected from the PGDP during 1999 (OREIS 1999).

	Radionuclide Concentration (pCi/g)											
	¹³⁷ Cs	²³⁷ Np	^{239/240} Pu	⁹⁰ Sr	⁹⁹ Tc	²³⁰ Th	²³⁴ U	²³⁵ U	²³⁸ U			
Mean												
of												
Detects												
(# of							0.012					
detects)	(0)	(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)			
Range												
of							ND-					
Detects	ND-ND	ND-ND	ND-ND	ND-ND	ND-ND	ND-ND	0.012	ND-ND	ND-ND			

Table 2-41. Aroclor concentrations measured in fat tissue of six rabbits collected from the PGDP during 1999 (OREIS 1999).

	Aroclor Concentration (µg/kg)									
	1016 1221 1232 1242 1248 1254 12									
Mean of										
Detects (#										
of detects)	(0)	(0)	(0)	(0)	(0)	(0)	(0)			
Range of										
Detects	ND-ND	ND-ND	ND-ND	ND-ND	ND-ND	ND-ND	ND-ND			

Table 2-42. Metal concentrations (μ g/g wet weight) measured in kidney tissue from amphibians collected at the PGDP (DeGarady 2002).

	Pb		Cd			Cr		Cu		Al		Fe
		detect/										
		analyz		detect/								
Outfall	mean	ed	mean	analyzed								
001	ND	0/6	0.22	3/6	0.06	1/6	2.14	6/6	0.76	3/6	167	6/6
002	ND	0/1	0.19	1/1	0.30	1/1	1.48	1/1	ND	0/1	89.0	1/1
008	0.70	1/3	0.39	2/3	0.07	1/3	2.35	2/3	1.46	3/3	131	3/3
009	0.72	2/5	0.37	4/5	0.11	2/5	2.05	5/5	0.86	3/5	198	5/5
012	ND	0/7	0.17	4/7	0.07	3/7	1.98	5/7	0.41	4/7	149	7/7
013	0.62	1/3	0.11	1/3	ND	0/3	1.78	2/3	0.41	2/3	125	3/3

Literature Cited

Annual Site Environmental Reports. 1985-2000. Paducah Gaseous Diffusion Plant, 1985-2001. US DOE.

Birge, W.J., and D.J. Price. 2000. Summary of monitoring studies reported in December 1997 through December 1999. Report. School of Biological Studies, University of Kentucky.

Capdeveille, M.C., and C.G. Scanes. 1995. Effect of dietary acid or aluminum on growth and growth-related hormones in mallard ducklings (Anas platyrhynchos). Archives of Environmental Toxicology and Chemistry 29:462-468.

CDM. 2000. Drum mountain small mammal sampling, March 2000, Paducah Gaseous Diffusion Plant, Paducah Kentucky. CDM Federal Services, Inc., BJC/PAD-184/V2.

CDM. 2002. Scrap yards small mammal sampling project report Paducah Gaseous Diffusion Plant, Paducah, Kentucky. CDM Federal Services, Inc., BJC/PAD-303/R1.

Cook, J.A, and M.S. Johnbson. 1996. Cadmium in small mammals. Pages 377 – 388 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

DeGarady, C.J. 2002. Health and distribution of amphibians around the Paducah Gaseous Diffusion Plant. MS Thesis, Southern Illinois University, Carbondale, Illinois.

Eisler. R. 2000. Handbook of chemical risk assessment: Health hazards to humans, plants, and animals. Volume 1. CRC Press, Inc., Boca Raton, Florida, USA.

EPA. 1993. Wildlife exposure factors handbook. Environmental Protection Agency, EPA/600/R-93/187b.

Franson, J.C. 1996. Interpretation of tissue lead residues in birds other than waterfowl. Pages 265–280 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

Furness, R.W. 1996. Cadmium in birds. Pages 389–404 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

Halbrook, R.S. 2000. River otter analysis report. Cooperative Wildlife Research Laboratory, Southern Illinois University, Carbondale, Illinois, USA.

Hariono, B., J. Ng, and R.H. Sutton. 1993. Lead concentrations in tissues of fruit bats

(Pteropus sp.) in urban and non-urban locations. Wildlife Research 20:315-320.

Hoffman, D.J., C.P. Rice, and T.J. Kubiak. 1996. PCBs and dioxins in birds. Pages 165–208 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

Kamrin, M.A., and R.K. Ringer. 1996. Toxicological implications of PCB residues in mammals. Pages 153–164 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

Ma, W. 1996. Lead in mammals. Pages 281–296 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

Martin, A.C., H.S. Zim, and A.L. Nelson. 1951. American wildlife and Plants. Dover Publications, Inc., New York, New York, USA.

Mason, C.F., and A.B. Madsen. 1992. Mercury in Danish otters (*Lutra lutra*). Chemosphere 25:865-867.

McKernan, M.A. 2002. Starlings as ecological monitors of the West Kentucky Wildlife Management Area/DOE Paducah Plant Complex. MS Thesis, Southern Illinois University, Carbondale, Illinois, USA.

McMurry, S., and P. Smith. 1997. Polychlorinated biphenyl and metal exposure of small mammals at the Paducah Gaseous Diffusion Plant, McCracken County, Kentucky. Final Report.

Meyer-Schöne, L. 2000. Ecological risk assessment of reptiles. Pages 793 – 810 in D.W. Sparling et al., Editors. Ecotoxicology of amphibians and reptiles, SETAC Press, Pensacola, Florida, USA.

MSAL. 2002. ECDMS analytical report. Mississippi State Analytical Laboratory, Mississippi State University.

Ohio Historical Society. 2005. European Starling. <u>Ohio History Central: An Online</u> <u>Encyclopedia of Ohio History.</u> http://www.ohiohistorycentral.org/entry.php?rec=1066 Accessed 13 May 2007.

Oreis. 1998-2005. Oak Ridge Environmental Information System Data, Oak Ridge Operations (DOE-ORO) Environmental Management Program, Data from 1998 - 2005.

Phillips, C.A., R.A. Brandon, and E.O. Moll. 1999. Field guide to amphibians and reptiles of Illinois. Illinois Natural History Survey, Champaign, Illinois, USA.

Price, D., and W.J. Birge. 1998. Analysis of polychlorinated biphenyls (PCB) in redtailed hawk blood, mink and deer liver and kidney. Report, University of Kentucky. 8 pages.

Roelke, M.E., D.P. Schultz, C.F. Facemire, and S.F. Sundlof. 1991. Mercury contamination in the free-ranging endangered Florida panther (*Felis concolor coryi*). Proceedings of the American Association of Zoological Veterinarians 1991:277-283

Seaborg, W.D. 2001. Paducah deer data summary 1990 through 2000. Paducah Site Office, Department of Energy, Paducah, Kentucky, USA. (52)

Smits, J.E., and G.R. Bortolotti. 2001. Antibody-mediated immunotoxicity in American kestrels (*Falco sparverius*) exposed to polychlorinated biphenyls. Journal of Toxicology and Environmental Health Part A 62:217-226.

Tella, J.L., G.R. Bortolotti, R.D. Dawson, and M.G. Forero. 2002. Environmental and genetic variation in T cell-mediated immune response of fledging American kestrels. Oecologia 123:453-459.

Texas Tech University. 1999. Racoons (*Procyon lotor*) as sentinels of polychlorinated biphenyl and heavy metal exposure and effects at Paducah Gaseous Diffusion Plant, McCracken County, Kentucky. Final Report to Bechtel-Jacobs Company, dated June 18, 1999.

Thompson, D.R. 1996. Mercury in birds and terrestrial mammals. Pages 341–356 *in* W.N. Beyer, G.H. Heinz, and A.W. Redmon-Norwood, editors. Environmental contaminants in wildlife: Interpreting tissue concentrations. CRC Press, Inc., Boca Raton, Florida, USA.

USEPA. 1980. Ambient water quality criteria for mercury. USEPA Rep 440/5-80-058. Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.