Analysis of Polychlorinated Biphenyl Mixtures (PCB) and Metals in Water Samples Collected from the Bayou Creek System on August 13-14, 2001

Wesley J. Birge

David J. Price

FINAL REPORT

July 19, 2002

Submitted to

Jon Maybrier

Division of Waste Management
Kentucky Department for Environmental Protection

INTRODUCTION

Water samples (45 samples) were taken from Big and Little Bayou Creeks on August 13-14, 2001 for PCB and metal analyses. A total of 10 sites were sampled from Big Bayou Creek (stations BB1A through BB9) and 4 sites were included for Little Bayou Creek (stations LB1 through LB4). A new reference station, upstream of BB1 and designated BB1A, was included in this stream survey. In addition, the Massac Creek (MC) station, on the West Fork of Massac Creek, was sampled and served as a possible reference station independent of the Bayou Creek system. Water samples were taken at each station for general water quality analyses which included pH, conductivity, alkalinity, and hardness. Two water samples per station were collected for PCB assays, and a separate water sample per station was collected for metal analysis. Three Aroclors (*i.e.* 1248, 1254, and 1260) and 9 metals (*i.e.* Ag, Be, Cd, Cr, Cu, Fe, Ni, Pb and Zn) were analyzed for each sample.

METHODS

Water Collection

General Water Quality: Samples for water quality measurements were collected in 1-L "Cubitainer" receptacles and were placed on ice until delivery to the laboratory.

PCBs: Water samples for PCB analyses were collected in chemically cleaned, 1-L amber glass jars with teflon-lined caps. New jars were obtained from

I-Chem®. Samples for PCB determinations were placed on ice until delivery to the laboratory and maintained under refrigeration (4°C) until extraction.

Metals: Water samples for metal assays were collected in acid-cleaned 250-mL polyethylene bottles. Samples were preserved with concentrated HNO₃ upon collection and analyzed for total recoverable (TR) metals.

General Water Quality

Water quality parameters included pH, conductivity, alkalinity and hardness that were measured according to procedures described by APHA (1995). The measurements were performed with a pH meter (Orion Research EA920), a conductivity meter (Amber Science Model 604), the bromocresol green-methyl red titrimetric procedure, and the EDTA titrimetric procedure, respectively.

PCB Water Extractions

Extraction and cleanup of water samples followed procedures described by Birge and Price (2002), and were completed within 7 days of collection.

PCB Determinations

Samples were analyzed for Aroclors 1248, 1254, and 1260 according to SW-846 Method 8082 (U.S. EPA, 1997). Analyses were performed as described by Birge and Price (2002).

Water Metal Determinations

Nine metals were analyzed, including silver (Ag), beryllium (Be), cadmium (Cd), chromium (Cr), copper (Cu), iron, (Fe), lead (Pb), nickel (Ni), and zinc (Zn). Metal analyses were performed by graphite furnace-atomic absorption spectrophotometry (GF-AAS) as described by Birge and Price (2002).

Quality Assurance

Permanent bench records were kept of all assays and annotated as required under Good Laboratory Practices (*Federal Register*, 40 CFR, Part 160, August 17, 1989). All printouts and graphic recordings were filed and are open for inspection. These bench records will be archived within two years after the close of the project but retrievable upon request. Chain of Custody was maintained for all samples collected.

RESULTS

Water Quality

The results for general water quality parameters are given in Table 1. Overall, pH values were within the preferred range of 6.5-8.5. Station BB5 had the highest pH value of 8.3. Conductivity ranged from 107 to 362 µMHOs/cm and was highest at BB8. Alkalinity varied from 16 to 40 mg CaCO₃/L in Big Bayou Creek and 20 to 28 mg CaCO₃/L in Little Bayou Creek. Hardness ranged from 44 to 88 mg CaCO₃/L and 64 to 88 mg CaCO₃/L for Big and Little Bayou Creeks,

respectively. Hardness levels were highest for stations BB6, BB7, BB8 and BB9. The mean values were 56.7 ± 9.3 for stations upstream of effluent 001 and 85.0 \pm 3.8 for stations below this outfall. Hardness (mg CaCO₃/L) for Little Bayou Creek averaged 76.0 ± 11.8 .

PCB Contamination

Results for PCB analyses of water samples are given in Tables 2 and 3 for Big and Little Bayou Creeks, respectively. No PCBs were quantifiable in any of the water samples collected, observing detection limits of 0.08 to 0.11 µg PCB/L.

Metal Contamination

Results for metal assays of water samples are given in Tables 4 and 5 for Big and Little Bayou Creeks, respectively. Silver was not detected at any of the stations at the 0.25 μg/L (ppb) detection limit. Metal concentrations for Beryllium (Be) and Lead (Pb) were below the minimum quantitation limit and are shown only for qualitative purposes. Be concentrations increased at stations BB6 and BB7, which are situated just downstream of effluent 001. Pb was highest at stations BB5 and BB6, where the concentrations were 0.599 and 0.460 μg/L. Cadmium (Cd) was only detected at station BB4 (0.724 μg/L). Chromium (Cr) was observed at stations BB5 through BB8, with BB7 having the highest concentration. Cr values were 1.49, 1.37, 2.37, and 1.96 μg/L for stations BB5, BB6, BB7, and BB8, respectively. Copper (Cu) was highest for stations BB5 and

BB6 (4.20 and 2.50 μ g/L). Iron was highest at stations BB5 (1955.9 μ g/L) and BB2 (1310.3 μ g/L). Zinc (Zn) was highest at stations BB2 and BB4 (9.74 and 7.06 μ g/L). Be, Fe and Zn were highest at stations LB1 and LB4 in Little Bayou Creek (Table 5). It should be noted that Fe concentrations exceeded 1 μ g/L at these stations. Metal contamination was less than recorded in previous studies (Birge and Price, 2001). This may indicate improvement within the Bayou Creek system but further monitoring will be required to confirm these results. Seasonal and annual fluctuations are know to occur in Big and Little Bayou Creeks.

Table 1. Water quality results for stream water samples from the Bayou Creek system collected August 13-14, 2001.

Station	рН	Conductivity (µMHOs/cm)	Alkalinity (mg CaCO ₃ /L)	Hardness (mg CaCO ₃ /L)	
MC ¹	6.7	107	16	36	
BB1A	7.2	235	28	60	
BB1	7.3	229	40	64	
BB2	6.9	143	20	44	
BB3	7.2	222	24	68	
BB4	7.3	224	16	56	
BB5	8.3	216	16	48	
BB6	7.8	346	16	84	
BB7	7.5	355	20	80	
BB8	7.3	362	16	88	
BB9	7.1	252	16	88	
LB1	7.1	140	28	68	
LB2	7.6	295	20	88	
LB3	7.6	284	20	84	
LB4	7.1	141	24	64	

¹ Massac Creek was sampled at the UK site (Western Fork).

Table 2. PCB results for water samples from Big Bayou Creek collected August 14, 2001.

			Aroclor	Aroclor Concentration (μg/L)				
Station	Date	Sample	1248	1254	1260			
MC	08/14/01	PWS1	<0.080	<0.080	<0.080			
MC	08/14/01	PWS2	<0.102	<0.102	<0.102			
BB1A	08/14/01	PWS1	<0.082	<0.082	<0.082			
BB1A	08/14/01	PWS2	<0.102	<0.102	<0.102			
BB1	08/14/01	PWS1	<0.081	<0.081	<0.081			
BB1	08/14/01	PWS2	<0.103	<0.103	<0.103			
BB2	08/14/01	PWS1	<0.081	<0.081	<0.081			
BB2	08/14/01	PWS2	<0.100	<0.100	<0.100			
BB3	08/14/01	PWS1	<0.081	<0.081	<0.081			
BB3	08/14/01	PWS2	<0.101	<0.101	<0.101			
BB4	08/14/01	PWS1	<0.081	<0.081	<0.081			
BB4	08/14/01	PWS2	<0.102	<0.102	<0.102			
BB5	08/14/01	PWS1	<0.084	<0.084	<0.084			
BB5	08/14/01	PWS2	<0.112	<0.112	<0.112			
BB6	08/14/01	PWS1	0.099	<0.084	<0.084			
BB6	08/14/01	PWS2	<0.101	<0.101	<0.101			
BB7	08/14/01	PWS1	<0.082	<0.082	<0.082			
BB7	08/14/01	PWS2	<0.101	<0.101	<0.101			
BB8	08/14/01	PWS1	0.040*	<0.081	<0.081			
BB8	08/14/01	PWS2	<0.104	<0.104	<0.104			
BB9	08/14/01	PWS1	<0.082	<0.082	<0.082			
BB9	08/14/01	PWS2	<0.107	<0.107	<0.107			

^{*} PCBs detected, however the value was below Minimum Quantitation Limit (MQL).

Table 3. PCB results for water samples from Little Bayou Creek collected August 13, 2001.

			Aroclo	r Concentration	n (μg/L)
Station	Date	Sample	1248	1254	1260
LB1	08/13/01	PWS1	<0.084	<0.084	<0.084
LB1	08/13/01	PWS2	<0.103	<0.103	<0.103
LB2	08/13/01	PWS1	<0.084	<0.084	<0.084
LB2	08/13/01	PWS2	<0.104	<0.104	<0.104
LB3	08/13/01	PWS1	<0.082	<0.082	<0.082
LB3	08/13/01	PWS2	<0.101	<0.101	<0.101
LB4	08/13/01	PWS1	<0.082	<0.082	<0.082
LB4	08/13/01	PWS2	<0.101	<0.101	<0.101

Table 4. Metal concentrations in water samples from Massac Creek and Big Bayou Creek collected August 14, 2001.

			Water Metal Conc. (μg/L) ¹								
Station	Date	Sample	Ag	Ве	Cd	Cr	Cu	Fe	Pb	Ni	Zn
MC	8/14/01	MWS1	<0.250	0.023*	<0.250	<1.000	1.011	286.1	0.134*	<3.00	0.96*
BB1A	8/14/01	MWS1	<0.250	0.045*	<0.250	<1.000	<1.000	736.0	0.176*	<3.00	<1.00
BB1	8/14/01	MWS1	<0.250	0.034*	0.357	<1.000	<1.000	510.1	0.238*	<3.00	6.12
BB2	8/14/01	MWS1	<0.250	0.044*	<0.250	<1.000	1.968	1310.3	0.396*	5.07	9.74
BB3	8/14/01	MWS1	<0.250	0.033*	<0.250	<1.000	1.653	533.8	0.203*	2.99	1.28
BB4	8/14/01	MWS1	<0.250	0.056*	0.724	<1.000	1.811	241.1	0.118*	3.09	7.06
BB5	8/14/01	MWS1	<0.250	0.067*	<0.250	1.487	4.200	1955.9	0.599*	3.97	4.48
BB6	8/14/01	MWS1	<0.250	0.100*	<0.250	1.370	2.495	566.4	0.460*	4.17	2.16
BB7	8/14/01	MWS1	<0.250	0.102*	<0.250	2.366	1.855	453.9	0.403*	4.12	1.13
BB8	8/14/01	MWS1	<0.250	0.080*	<0.250	1.964	1.262	341.9	0.393*	3.82	<1.00
BB9	8/14/01	MWS1	<0.250	0.057*	<0.250	<1.000	2.226	849.8	0.310*	5.43	1.16

¹ Asterisk represent samples where metal concentrations were detected but were below minimum quantitation limit (MQL).

Table 5. Metal concentrations in water samples from Little Bayou Creek collected August 13, 2001.

				Water Metal Conc. (μg/L) ¹							
Station	Date	Sample	Ag	Be	Cd	Cr	Cu	Fe	Pb	Ni	Zn
LB1	8/13/01	MWS1	<0.250	0.133*	<0.250	<1.000	3.360	1553.7	0.406*	5.27	13.66
LB2	8/13/01	MWS1	<0.250	0.044*	<0.250	0.938*	3.782	357.8	0.291*	3.26	5.53
LB3	8/13/01	MWS1	<0.250	0.044*	0.283	<1.000	3.284	416.3	0.280*	5.66	3.74
LB4	8/13/01	MWS1	<0.250	0.067*	<0.250	1.030	2.766	1614.9	0.321*	5.18	12.07

¹ Asterisk represent samples where metal concentrations were detected but were below minimum quantitation limit (MQL).

REFERENCES

APHA-American Public Health Association, American Water Works Association and Water Pollution Control Federation. 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, Washington, DC.

Birge, W.J. and D.J. Price. 2002. Analysis of Polychlorinated Biphenyl Mixtures (PCB) and Metals in Water Samples Collected from the Bayou Creek System on February 19-20, 2001. Report submitted February 1, 2002 to Jon Maybriar, Division of Waste Management.

Birge, W. J. and D. J. Price. 2001. Analysis of Metal Concentrations in Water Samples Collected February 28 - March 1, 2000 from the Bayou Creek System, Report submitted April 25, 2001 to Jon Maybriar, Division of Waste Management, 14 pp.

U.S. EPA. 1997. Test methods for evaluating solid wastes, SW-846, Final Update 3. Office of Solid Waste and Emergency Response, Washington, D.C.