Overview of Report "Seismic Issues for Consideration in Site Selection and Design of a Potential On-Site CERCLA Waste Disposal Facility at the Paducah Gaseous Diffusion Plant"

Background

- DOE is evaluating waste disposal alternatives at PGDP
 - remediation wastes
 - D&D wastes
- One option DOE is considering is an on-site CERCLA waste disposal facility
- Seismic activity presents a key siting/design consideration

Objectives of Technical Memo

- First step is addressing seismic issues relating to:
 - site selection
 - design
- Determine if seismic concerns represent an insurmountable barrier; if not:
 - develop preliminary siting criteria
 - develop preliminary design criteria

Scope

- Review published documentation
 - geologic setting
 - seismologic setting
 - identify features or unstable ground
- Review regulations that identify seismic siting and design requirements
 - Kentucky
 - EPA
 - DOE Orders
 - NRC
- Review seismic design basis
 - PGDP facilities
 - other DOE CERCLA waste disposal facilities
 - performance of landfills subjected to large earthquakes

SSAB Briefing January 18, 2001

Key Terms

Holocene

Geologic term referring to the past 10,000 to 12,000 years.
 Regulations focus on faulting that has occurred during this time frame.

Pleistocene

 Geologic term referring to the period older than Holocene but less than approximately 2 million years in age.

Liquefaction

- Temporary transformation of soils from a stable to unstable condition due to a rise in water pressures caused by shaking.
- Acceleration (g)
 - A measure of the strength of shaking caused by an earthquake.
 Usually expressed as a fraction or percent of gravity (g). It includes both horizontal and vertical components.

Geologic/Seismic Setting

- New Madrid Seismic Zone located southwest of the PGDP
 - location of large historical earthquakes
 - location of large Holocene earthquakes (less than 10,000 years ago)
- Wabash Valley Source located northwest of the PGDP
 - location of moderate historical earthquakes
 - location of large Holocene earthquakes (less than 10,000 years ago)
- Paducah Area
 - no large historical earthquakes
 - no evidence of large Holocene earthquakes
- Faults are in exposed Pleistocene sediments (>10,000 and <2 million years old)
 - 4 miles east of PGDP
 - 5 miles northwest of PGDP

Geologic/Seismic Setting (con't)

- Kentucky Geological Survey remote sensing studies
 - identify lineaments in vicinity
 - suggest faulting in Pleistocene
 (>10,000 and <2 million years old)
 sediments at PGDP
 - no clear evidence of Holocene faulting (last 10,000 years)

Geologic/Seismic Setting (con't)

- PGDP is located on generally flat "upland" surface
 - saturated granular soils are older and denser
 - less prone to liquefaction
 - less prone to slope failure
- Past PGDP modeling studies performed by the US Army Corps of Engineers in 1993:
 - considered 7.3 magnitude earthquake with epicenter 50 km away
 - found foundation soils generally stable
 - identified isolated pockets of sands and gravels that could settle less than one inch

Regulatory Considerations

- Commonwealth and Federal Regulations
 - RCRA Subtitle C (hazardous wastes)
 - RCRA Subtitle D (municipal wastes)
 - TSCA (Toxic Substances Control Act)
 - LLRW (low-level radioactive wastes)
 - mixed wastes
- DOE Orders and Standards
- Significant degree of overlap
 - Commonwealth generally reflects federal regulations
 - generally well-defined set of regulations

Proposed Site Selection Criteria

- Areas will be avoided that are within 200 ft of a fault that has had displacement in Holocene time (within the last 10,000 to 12,000 years)
 - studies are required for sites within 3,000 ft of Holocene Fault or within 3,000 ft of lineation that suggests the presence of a Holocene Fault
- Areas will be avoided that are susceptible to slope failure, excessive settlement, or liquefaction
- These criteria mitigate the potential for
 - fault movement causing displacement of facility structures
 - fault movement resulting in vibratory ground motion that can cause damage
 - ground shaking that can cause ground failures such as slope failure, settlement, and liquefaction

Proposed Seismic Design Criteria

- The facility will be designed to withstand ground shaking caused by infrequent large earthquakes. Regulations require that the structure be designed to:
 - resist levels of ground shaking of an earthquake with no more than 10 percent probability of occurring during the next 250 years (0.40 g)
 - this coincides with an earthquake with a return period of approximately 2,500 years

Proposed Seismic Design Criteria (con't)

- The facility shall address seismic hazards consistent with DOE orders and standards
 - basis for the design of structures or features at DOE facilities
 - provides constraints on vertical ground motions
- All containment systems will be designed to withstand predicted ground displacement resulting from seismically induced liquefaction, slope failure, or settlement

Past Seismic Investigations at PGDP

- In 1960s and 1970s, designs were based on an earthquake with a 250-year return period (0.18 g)
- Recent PGDP building upgrades are based on performance category and return periods of 500 years, 1,000 years, and 2,000 years
- C-746-U Landfill is designed to meet 0.4 g
- Recent (1999) site-specific probabilistic seismic hazard analysis conducted by Risk Engineering Inc.
 - New Madrid Seismic Zone
 - Wabash Valley
 - Local Site Conditions

The 1999 Risk Engineering site-specific study found that the ground motion resulting from the 2,500-year earthquake event is approximately 0.4 g.

Conclusions

- PGDP is located in a Seismic Impact Zone and seismicity is a key siting/design consideration
- Based on information reviewed to date, seismicity does not present an insurmountable barrier to the construction of a potential on-site CERCLA waste disposal facility cell
- Established design and construction methods can adequately mitigate the seismic hazard (e.g., flatten side slopes, design for limited settlement)
- A potential on-site CERCLA cell would be evaluated as part of a feasibility study.