

Challenges in Seismic Hazard Assessment for PGDP

Zhenming Wang Edward W. Woolery

KRCEE – PGDP Technical Symposium October 30-31, 2007

Seismic Hazard Assessment

- The goal:
 - determining a level of hazard (ground motion and its occurrence frequency) for engineering design and other consideration
- The Challenges:
 - What do we know about earthquakes?
 - How do we define seismic hazard and risk?
 - How do we assess seismic hazard and risk? (second presentation)

Earthquakes – Magnitude

UK

New Madrid Seismic Zone

1) At least three large earthquakes occurred in 1811-1812 (M7.0-8.0)

2) Two ~M6.0 (1886 and 1895)

UK

Earthquakes – Ground Motion

MMI at PGDP: ~XIII (0.3g PGA)

Modified Mercalli Intensity Scale		
INTENSITY	EFFECTS	AVE. PEAK ACCELERATION
VI	Strong 0.06–0.07g	Felt by all. Damage slight.
VII	Very Strong 0.10–0.15g	Everybody runs outdoors. Considerable damage to poorly designed buildings.
VIII	Destructive 0.25–0.30g	Considerable damage to ordinary buildings.
IX	Ruinous 0.50–0.55g	Great damage to ordinary buildings
x	Disastrous >0.60g	Many buildings destroyed.
XI	Disastrous	Few, if any, structures remain standing (Simplified from Bolt, 1993)

Earthquakes – Recurrence Interval

Recurrence interval: ~500 years

Paleo-liquefaction records (Tuttle and others, 2002)

UK Earthquakes – Recurrence Interval

Calais and others (2006)

Recurrence interval: ~1,000 years

Holbrook and others (2006)

UK

Earthquakes - Summary

New Madrid Earthquake

1) Magnitude: M7.0-8.0 (how big)

2) Recurrence interval: 500~1,000 years (how often)

3) Location: consistent with current seismicity (where)

4) At PGDP: ~VIII MMI (0.3g PGA) (how strong)

With large uncertainties

Site Amplification

CUSSO - project

Seismic Hazard and Risk

- Hazard
 - Earthquake, ground motion, liquefaction
 - A physical <u>measurement</u> vs. its associated <u>mean recurrence</u> interval (A vs. τ)

Natural occurrence (records)

 May not be useful for policy consideration

- Risk
 - Probability of an earthquake, ground motion or liquefaction
 - <u>Probability</u> that a <u>level of</u>
 <u>hazard (physical measurement)</u>
 could be exceeded for a given
 <u>exposure (time)</u>
 - Subjective (depending on the assumption on the event occurrence and exposure time)
 - Policy consideration

Hazard and risk are two fundamentally different concepts!

Seismic Hazard and Risk

CUS has a higher seismic hazard (A: M7.8 or MMI VIII)?

Seismic Hazard and Risk

Temporal measure:

The Bay Area: *RI*=~100 years New Madrid: *RI*=500~1,000 years

Seismic Hazard and Risk

Seismic Hazard: BA: M7.8 /~100 years NM: M7.8/500~1,000 years If loss: \$100B (same) Seismic Risk:

BA: M7.8 with 39% PE in 50 years NM: M7.8 with 5~10% PE in 50 years 39% Vs. 5~10% for \$100B loss/50y

Policy is made based on risk, not hazard. This is why

- most of resources and efforts goes to CA for seismic hazard mitigation
- 2) higher design ground motion in Paducah is not scientifically sound policy

What is it? hazard or risk map?

Acknowledgements

- The Department of Energy
- The U.S. Geological Survey
- Ky. Solid Waste Division
- Ky. Department (?) for Economic Development
- The Kentucky Research Consortium for Energy and Environment