

Sensing Superfund Chemicals with Recombinant Systems

Amol Date, Kendrick Turner, Patrizia Pasini, Leonidas G. Bachas and Sylvia Daunert

Department of Chemistry University of Kentucky Lexington, KY 40506

Whole Cell Biosensor

- Cell death-based
- Reporter gene-based

Whole Cell Biosensors for Hydroxy-PCBs

pSMM50R-B' cicB' ampi lacZ

BioNanotechnology

Daunert Group

log [4-chloro-2',3'-dihydroxybiphenyl, M]

- Single polypeptide chain
- Two globular domains connected by short polypeptides

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Daunert Group

 Ligand-binding is in the cleft between the two globular domains

Venus Flytrap

BioNanotechnology

Reagentless Biosensors

Genetically Modified Binding Protein

- Recombinant Proteins
- No substrates needed
- Random and/or siteselective modification with fluorophore
- Highly Selective and Sensitive
- Miniaturization/HTPS

Construction of *hbpR* and *hbpR-A* Expression Plasmids

BioNanotechnology

Construction of *hbpR-EGFP* and *hbpR-A-EGFP* Plasmids

BioNanotechnology

HbpR

Expression as inclusion bodies in cell pellet, will attempt to denature/renature

HbpR-A

Expression as soluble protein!

HbpR-A-EGFP Fluorescence Emission

1

Reporter: GFP

Nature, October 2003; http://www.nature.com.nsu/030929/030929-7.html

HbpR-A-EGFP

EGFP Fluorescence Intensity,Intact Cells, 24h InductionNegative ControlHbpR-A-EGFP

2 x 10 ⁴	5.9 x 10 ⁴
---------------------	-----------------------

When the HbpR-A-EGFP fusion protein recognizes and binds the analyte, it changes its conformation, which in turn causes a change in the intensity of the fluorescence emission of EGFP

Bacterial Spores as Transport and Storage Vehicles of Living Biosensors

Electron micrograph of the cross section of a spore of B. subtilis (width: 1.2 □m)

Adapted from Nicholson et al, 2000

When subjected to stress, *Bacillus* form spores that lock the DNA into a dry metabolically inactive shell, thus preserving it for long periods of time, until conditions are suitable for regermination

Advantages

- Preserve DNA for long periods of time
- Stability under extreme conditions, i.e., heat/cold, humid/dry, pH, etc.
- Simple and economic production of spores

- There are 4 putative zinc binding sites
- Two sites are at the opposite sides of dimer formed by Cys61, Asp64, and His 97 in each monomer
- Other two sites are at the interface, formed by Asp104, His106 of one monomer and His117 and Glu120 of the other monomer

BioNanotechnology

Dormant and Sensing Cycles

-4.5

-3.5

-4

Dynamic

Range (M)

1x10⁻⁴-1x10⁻⁶

1x10⁻⁴-1x10⁻⁶

1x10⁻⁴-1x10⁻⁶

1x10⁻⁴-1x10⁻⁶

1x10⁻⁴-1x10⁻⁶

1x10⁻⁶

Months Storage

Response of *B. megaterium* Zinc Sensing Cells before and after Sporulation

Miniaturization and Field Studies

Centrifugal Microfluidics Platform or Lab-on-a-CD

- Micro-Total Analysis System or μ-Tas
- Low power and space requirements
- Less reagent and sample consumption
- Portable
- Short analysis time
- High throughput multi-analyte detection
- Integrate washing, sample preparation and calibration

Sensing on the Lab-on-a-CD

BioNanotechnology

Microfluidics of Mixing Reagents

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Germination Study of Spores on a **Microfluidic Platform**

BioNanotechnology

Daunert Group

Actual Optical Density	0.2	0.3	0.4	0.5	0.7	0.8
Reading by Optic fiber	3.83	8.51	12.08	13.8	16.8	18.96

From the above data, the desired optical density of 0.7

BioNanotechnology

Special Thanks to:

The past and present members of the Daunert Group

For more info: daunert@uky.edu

BioNanotechnology

Daunert Group

Dr. Leonidas G. Bachas Frank J. Derbyshire Professor of Chemistry Department of Chemistry University of Kentucky

